Skip to main content

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 38))

Abstract

Of the many possible applications of electron-photon Monte Carlo calculations to problems in radiation physics, a significant subset can be carried out in rather simple geometry, such as slabs or cylinders composed of a single, or perhaps a few, materials. Consideration of simple geometries tends to aid our understanding of the transport results, and often facilitates the development of calculated datasets which can be applied to the solution of a general set of problems without further recourse to the Monte Carlo calculations. In this paper we give a few examples of such problems, which have been investigated through ETRAN Monte Carlo calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Berger and S. M. Seltzer, “Response Functions for Sodium Iodide Scintillation Detectors”, Nucl. Instr. Meth. 104 (1972) 317.

    Article  Google Scholar 

  2. J. I. Trombka and R. L. Schmadebeck, “A Method for the Analysis of Pulse-Height Spectra Containing Gain-Shift and Zero-Shift Compensation”, Nucl. Instr. Meth. 62 (1968) 253.

    Article  Google Scholar 

  3. J. I. Trombka, C. S. Dyer, L. G. Evans, M. J. Bielefeld, S. M. Seltzer and A. E. Metzger, “Reanalysis of the Apollo Cosmic-Ray Spectrum in the 0.3 to 10 MeV Energy Region”, Astrophys. J. 212 (1977) 925.

    Article  ADS  Google Scholar 

  4. C. S. Dyer, J. I. Trombka and S. M. Seltzer, “Nuclear Data for Assessment of Activation of Scintillator Materials During Spaceflight”, in Nuclear Cross Sections and Technology, National Bureau of Standards Special Publ. 425, Vol. II (1975) 480; also “Calculation of Radioactivity Induced in Scintillator Materials During Spaceflight”, Trans. Am. Nucl. Soc. 27 (1977) 195.

    Google Scholar 

  5. S. M. Seltzer, “The Response of Scintillation Detectors to Internally Induced Radioactivity”, Nucl. Instr. Meth. 127 (1975) 293.

    Article  Google Scholar 

  6. M. Ehrlich, S. M. Seltzer, M. J. Bielefeld, J. I. Trombka, “Spectrometry of a 60Co Gamma-Ray Beam Used for Instrument Calibration”, Metrologia 12 (1976) 169.

    Article  ADS  Google Scholar 

  7. S. M. Seltzer, “Calculated Response of Intrinsic Germanium Detectors to Narrow Beams of Photons with Energies up to ~ 300 keV”, Nucl. Instr. Meth. 188 (1981) 133.

    Article  Google Scholar 

  8. L. H. Christenson, “Comparison between Experimental and Calculated Relative Escape Peak Intensities for an Intrinsic Ge Detector in the Energy Region 11–25 keV”, X-ray Spectrom. 8 (1979) 146.

    Article  Google Scholar 

  9. W. W. Seelentag and W. Panzer, “Stripping of X-Ray Bremsstrahlung Spectra up to 300 kVp on a Desk Type Computer”, Phys. Med. Biol. 24 (1979) 767.

    Article  Google Scholar 

  10. T. R. Fewell, personal communication (1977).

    Google Scholar 

  11. C. Soares and M. Ehrlich, personal communication (1980).

    Google Scholar 

  12. S. M. Seltzer, C. Soares and M. Ehrlich, “Characterization of Radiation Beams: Bremsstrahlung Photon Beams”, in Quality Assurance for Measurements of Ionizing Radiation, edited by E. H. Eisenhower, National Bureau of Standards report NUREG/CR-3775 (1984), B-l.

    Google Scholar 

  13. S. M. Seltzer, “Calculated Response of a 5.5 x 5.5 cm High-Purity Ge Detector to Gamma Rays with Energies up to 20 MeV”, National Bureau of Standards report NBSIR 87 - 3548 (1987).

    Google Scholar 

  14. S. M. Seltzer, “Electron, Electron Bremsstrahlung and Proton Depth-Dose Data for Space-Shielding Applications”, IEEE Trans. Nucl. Sci. NS-26 (1979) 4896; and “SHIELDOSE: A Computer Code for Space-Shielding Radiation Dose Calculations”, National Bureau of Standards Technical Note 1116 (1980).

    Google Scholar 

  15. S. M. Seltzer, “Conversion of Depth-Dose Distributions from Slab to Spherical Geometries for Space-Shielding Applications”, IEEE Trans. Nucl. Sci. NS-33 (1986) 1292.

    Google Scholar 

  16. T. M. Jordan, “Electron Dose Attenuation Kernals for Slab and Spherical Geometries”, Air Force Weapons Laboratory report AWRL-TR-81–43 (1981).

    Google Scholar 

  17. G. Barnea, S. M. Seltzer and M. J. Berger, “Transport of Electrons and Associated Bremsstrahlung Through a Composite Aluminum-Lead Shield, With Applications to Spacecraft Shielding”, National Bureau of Standards report NBSIR 86-3429 (1986); and G. Barnea, M. J. Berger and S. M. Seltzer, “Optimization Study of Electron-Bremsstrahlung Shielding for Manned Spacecraft”, J. Spacecraft and Rockets 24 (1987) 158.

    Article  ADS  Google Scholar 

  18. S. M. Seltzer, J. P. Farrell and J. Silverman, “Bremsstrahlung Beams from High-Power Electron Accelerators for Use in Radiation Processing”, IEEE Trans. Nucl. Sci. NS-30 (1983) 1629; and J. P. Farrell, S. M. Seltzer and J. Silverman, “Bremsstrahlung Generators for Radiation Processing”, Radiat. Phys. Chem. 22 (1983) 469.

    Google Scholar 

  19. S. M. Seltzer and M. J. Berger, “Bremsstrahlung Spectra from Electron Interactions with Screened Atomic Nuclei and Orbital Electrons”, Nucl. Instr. Meth. B12 (1985) 95; and “Bremsstrahlung Energy Spectra from Electrons with Kinetic Energy 1 keV–10 GeV Incident on Screened Nuclei and Orbital Electrons of Neutral Atoms with Z = 1–100”, Atom. Data and Nucl. Data Tables 35 (1986) 345.

    Article  ADS  Google Scholar 

  20. R. H. Pratt, H. K. Tseng, C. M. Lee, L. Kissel, C. MacCallum and M. Riley, “Bremsstrahlung Energy Spectra from Electrons of Kinetic Energy 1 keV ≤ T ≤2000 keV Incident on Neutral Atoms 2≤ Z ≤92”, Atom. Data and Nucl. Data Tables 20 (1977) 175; errata in 26 (1981) 477.

    Article  Google Scholar 

  21. M. J. Berger and S. M. Seltzer, “Bremsstrahlung and Photoneutrons from Thick Tungsten and Tantalum Targets”, Phys. Rev. C 2 (1970) 621.

    Article  ADS  Google Scholar 

  22. J. K. Tuli, “Evaluated Nuclear Structure Data File, A Manual for Preparation of Data Sets”, Brookhaven National Laboratory report BNL-NCS-51655 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Seltzer, S.M. (1988). Applications of ETRAN Monte Carlo Codes. In: Jenkins, T.M., Nelson, W.R., Rindi, A. (eds) Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1059-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1059-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8314-0

  • Online ISBN: 978-1-4613-1059-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics