Skip to main content

ETRAN — Experimental Benchmarks

  • Chapter

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 38))

Abstract

The ETRAN transport code is the realization of a Monte Carlo scheme for simulating electron histories carried out according to a “condensed random-walk” model. In this model, the sampling of individual elastic and inelastic collisions is replaced by the sampling of multiple-scattering deflections and energy losses in successive short path segments. An overview of the procedures involved can be found in Chapter 7.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. V. Hebbard and P. R. Wilson. “The Effect of Multiple Scattering on Electron Energy Loss Distributions”. Austral. J. Phys. 8 (1955) 90.

    ADS  Google Scholar 

  2. T. Sidei, T. Higasimura and K. Konosita, “Monte Carlo Calculation of the Multiple Scattering of the Electron”, Memoirs of the Faculty of Engineering, Kyoto University, 19 (No. II ) (1957).

    Google Scholar 

  3. J. E. Leiss, S. Penner and C. S. Robinson, “Range Straggling of High Energy Electrons in Carbon”, Phys. Rev. 107 (1957) 1544.

    Article  ADS  Google Scholar 

  4. M. J. Berger, “Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles”, in Methods in Computational Physics, Vol.1, ( Academic Press, New York, 1963 ) 135.

    Google Scholar 

  5. M.J. Berger and S. M. Seltzer, “Tables of Energy Losses and Ranges of Electrons and Positrons”, NASA Special Publication SP-3012 (1964).

    Google Scholar 

  6. R. M. Sternheimer, “The Density Effect for the Ionization Loss in Various Materials”, Phys. Rev. 88 (1952) 85.

    Article  ADS  Google Scholar 

  7. H. W. Koch and J. W. Motz, “Bremsstrahlung Cross-Section Formulas and Related Data”, Rev. Mod. Phys. 31 (1959) 920.

    Article  ADS  Google Scholar 

  8. R. M. Sternheimer and R. F. Peierls, “General Expression for the Density Effect for the Ionization Loss of Charged Particles”, Phys. Rev. B3 (1971) 3681.

    Article  ADS  Google Scholar 

  9. M. J. Berger and S. M. Seltzer, “Bremsstrahlung and Photoneutrons from Thick Tungsten and Tantalum Targets”, Phys. Rev. C2 (1970) 621.

    ADS  Google Scholar 

  10. International Commission on Radiation Units and Measurements (ICRU), “Stopping Powers for Electrons and Positrons”, ICRU Report 37 (1984).

    Google Scholar 

  11. S. M. Seltzer and M. J. Berger, “Bremsstrahlung Spectra from Electron Interactions with Screened Nuclei and Orbital Electrons”, Nucl. Instr. Meth. B12 (1985) 95.

    Article  ADS  Google Scholar 

  12. S. M. Seltzer and M. J. Berger, “Bremsstrahlung Energy Spectra from Electrons with Kinetic Energy 1 keV - 10 GeV Incident on Screened Nuclei and Orbital Electrons of Neutral Atoms with Z = 1 - 100”, Atom. Data and Nucl. Data Tables 35 (1986) 345.

    Article  ADS  Google Scholar 

  13. M. J. Berger and J. H. Hubbell, “XCOM: Photon Cross Sections on a Personal Computer”, National Bureau of Standards report NBSIR 87 - 3597 (1987).

    Google Scholar 

  14. P. J. Ebert, A. F. Lauzon and E. M. Lent, “Transmission and Backscattering of 4.0- to 12.0-MeV Electrons”, Phys. Rev. 183 (1961) 422.

    Article  ADS  Google Scholar 

  15. D. Harder, Habilitationsschrift, U. of Würzburg (1965).

    Google Scholar 

  16. D. Harder and G. Poschet, “Transmission und Reichweite schneller Elektronen im Energiebereich 4 bis 20 MeV”, Phys. Lett. 24B (1967) 519.

    Article  ADS  Google Scholar 

  17. S. M. Seltzer and M. J. Berger, “Transmission and Reflection of Electrons by Foils”, Nucl. Instr. Meth. 119 (1974) 157.

    Article  Google Scholar 

  18. L. Landau, “On the Energy Loss of Fast Particles by Ionization”, J. Phys. USSR 8 (1944) 201.

    Google Scholar 

  19. O. Blunck and K. Westphal, “Zum Energieverlust energiereicher Elektronen in dünnen Schichten”, Z. Phys. 130 (1951) 641.

    Article  ADS  Google Scholar 

  20. H. Theissen and F. Gudden, “Energieverlust von 53-MeV-Elektronen in Graphit”, Z. Phys. 191 (1966) 395.

    Article  ADS  Google Scholar 

  21. H. Breuer, “Energieverlust von Elektronen in Aluminium im Energiebereich 20 bis 60 MeV”, Z. Phys. 180 (1964) 209.

    Article  ADS  Google Scholar 

  22. E. L. Goldwasser, S. E. Mills and A. O. Hanson, “Ionization Loss and Straggling of Fast Electrons”, Phys. Rev. 88 (1952) 1137.

    Article  ADS  Google Scholar 

  23. H. E. Hall, A. O. Hansen and D. Jamnik, “Most Probable Energy Loss of Fast Electron”, Phys. Rev. 115 (1959) 633.

    Article  ADS  Google Scholar 

  24. K. J. Van Camp and V. J. Vanhyse, “Thick-Target Energy Loss Distributions of Electrons”, Z. Phys. 211 (1968) 152.

    Article  ADS  Google Scholar 

  25. H. Frank, “Zur Vielfachstreuung und Rückdiffusion schneller Elektronen nach Durchgang durch dicke Schichten”, Z. Naturforsch. 14a (1959) 247.

    ADS  Google Scholar 

  26. D. H. Rester and J. H. Derrickson, “Electron Transmission Measurements of Al, Si, and Au Targets at Electron Bombarding Energies of 1.0 and 2.5 MeV”, J. Appl. Phys. 42 (1971) 714.

    Article  ADS  Google Scholar 

  27. T. Tabata, R. Ito and S. Okabe, Annual Report of the Radiatiation Center of Osaka Prefecture 9 (1968) 34; also private communication.

    Google Scholar 

  28. B. Gross and K. A. Wright, “Charge Distribution and Range Effects Produced by 3-MeV Electrons in Plexiglass and Aluminum”, Phys. Rev. 114 (1959) 72.

    Article  ADS  Google Scholar 

  29. C. J. Crannell, H. Crannell and H. D. Zeman, “Electron-Induced Cascade Showers in Water and Aluminum”, Phys. Rev. 184 (1969) 426.

    Article  ADS  Google Scholar 

  30. W. R. Nelson, private communication (1978).

    Google Scholar 

  31. R. S. Caswell and M. J. Berger, “Theoretical Aspects of Radiation Dosimetry”, U.S. Atomic Energy Commission Publication LA-5180-C (1973) 60.

    Google Scholar 

  32. D. Harder and H. J. Schultz, Paper given at European Congress of Radiology, Amsterdam (1971); also private communication.

    Google Scholar 

  33. A. Brahme, G. Hulten and H. Svensson, “Electron Depth Absorbed Dose Distribution for a 10 MeV Clinical Mictrotron”, Phys. Med. Biol. 20 (1975) 39.

    Article  Google Scholar 

  34. S. C. Lillicrap, P. Wilson and J. W. Boag, “Dose Distributions in High Energy Electron Beams: Production of Broad Beam Distributions from Narrow Beam Data”, Phys. Med. Biol. 20 (1975) 30.

    Article  Google Scholar 

  35. L. V. Spencer, “Energy Dissipation by Fast Electrons”, National Bureau of Standards Monograph 1 (1959).

    Google Scholar 

  36. W. L. McLaughlin and E. K. Hussmann, “The Measurement of Electron and Gamma-ray Dose Distributions in Various Media”, in Large Radiation Sources for Industrial Processes, Int. Atom. Energy Agency Publication IAEA SM- 123/43 (1969).

    Google Scholar 

  37. M. J. Berger, S. M. Seltzer and K. Maeda, “Energy Deposition by Auroral Electrons in the Atmosphere”, J. Atmos. Terr. Phys. 32 (1970) 1015.

    Article  ADS  Google Scholar 

  38. A. E. Grün, “Lumineszenz-photmetrische Messungen der Energieabsorption im Strahlungsfeld von Elektronenquellen”, Z. Naturforsch. 12a (1957) 89.

    ADS  Google Scholar 

  39. M. J. Berger and S. M. Seltzer, “Penetration of Electrons and Associated Bremsstrahlung Through Aluminum Targets”, in Protection Against Space Radiation, NASA Publication SP-169 (1968) 285.

    Google Scholar 

  40. M. J. Berger and S. M. Seltzer, “Response Functions for Sodium Iodide Scintillation Detectors”, Nucl. Instr. Meth. 104 (1972) 317.

    Article  Google Scholar 

  41. H. W. Koch and J. M. Wyckoff, “Response of a Sodium Iodide Scintillation Spectrometer to 10- to 20-Million-Electron-Volt Electrons and X-Rays”, National Bureau of Standards J.Res. 56 (1956) 319.

    Article  Google Scholar 

  42. R. L. Heath, “Scintillation Spectrometry Gamma-Ray Spectrum Catalog”, U.S. AEC Publications IDO-16880-1 and 2 (1964).

    Google Scholar 

  43. G. J. Lockwood, L. E. Ruggles, G. H. Miller and J. A. Halbleib, “Calorimetric Measurement of Electron Energy Deposition in Extended Media-Theory vs Experiment”, Sandia Laboratories report SAND 79 - 0414 (1980).

    Google Scholar 

  44. S. M. Seltzer ad M. J. Berger, “Energy Deposition by Electron, Bremsstrahlung and Co Gamma-Ray Beams in Multi-Laayer Media”, Int. J. Appl. Radiat. Isot. 38 (1987) 349.

    Article  Google Scholar 

  45. C. P. Jupiter, J. R. Hatcher and N. E. Hansen, Bull. Am. Phys. Soc. 9 (1964) 338.

    Google Scholar 

  46. N. Starfelt and H. W. Koch, “Differential Bremsstrahlung Measurements of Thin-Target Bremsstrahlung”, Phys. Rev. 102 (1956) 1598.

    Article  ADS  Google Scholar 

  47. A. A. O’Dell, C. W. Sandifer, R. B. Knowlen and D. George, “Measurement of Absolute Thick-Target Bremsstrahlung Spectra”, Nucl. Instr. Meth. 61 (1968) 340.

    Article  Google Scholar 

  48. W. E. Dance and L. L. Baggerly, Ling-Temco-Vaught Res. Center report 0 - 71000/5R-12 (1965).

    Google Scholar 

  49. R. Placious, “Dependence of 50- and 100-keV Bremsstrahlung on Target Thickness, Atomic Number and Geometric Factors”, J. Appl. Phys. 38 (1967) 2030.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Berger, M.J. (1988). ETRAN — Experimental Benchmarks. In: Jenkins, T.M., Nelson, W.R., Rindi, A. (eds) Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1059-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1059-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8314-0

  • Online ISBN: 978-1-4613-1059-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics