Skip to main content

High-Energy Physics Applications of EGS

  • Chapter
  • 865 Accesses

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 38))

Abstract

When a shower takes place in a large detector mass, most of the incident energy appears as ionization or excitation in the medium. The energy of the initiating particle can be determined to a reasonable degree by sampling the energy deposited in the device—hence, the name “calorimeter”. Calorimetry has become an essential tool for high-energy physics experiments. With the new colliders—e.g., LEP and LHC at CERN, HERA at DESY, SLC at SLAC, and the proposed SSC in the U.S.— calorimeters have almost completely replaced conventional spectometers for particle identification and the measurement of their energy. Furthermore, the particle physics concept of jets has shifted the instrumentation emphasis from individual particle measurement to precise determination of the energy balance of multiparticle systems— i.e., towards calorimetry. Unfortunately, the complexity of these devices increases tremendously in the hundred-GeV energy range, and it is therefore important to have reliable simulation tools available for designing calorimeters and evaluating their performance with specific experiments in mind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. R. Nelson, H. Hirayama and D. W. O. Rogers, “The EGS4 Code System”, Stanford Linear Accelerator Center report SLAC-265 (1985).

    Google Scholar 

  2. Y. S. Tsai, “Pair Production and Bremsstrahlung of Charged Leptons”, Rev. Mod. Phys. 46 (1974) 815.

    Article  ADS  Google Scholar 

  3. D. F. Crawford and H. Messel, “Energy Distribution in Low-Energy Electron-Photon Showers in Lead Absorbers”, Phys. Rev. 128 (1962) 2352.

    Article  ADS  Google Scholar 

  4. H. H. Nagel, “Die Berechnung von Elektron-Photon-Kaskaden in Blei mit Hilfe der Monte-Carlo Methode”, Inaugural-Dissertation zur Erlangung des Doktor-grades der Hohen Mathematich-Naturwissenschaftlichen Fakultät der Rheinischen Freidrich-Wilhelms-Universität zu Bonn, 1964; “Elektron-Photon-Kaskaden in Blei”, Z. Phys. 186 (1965) 319.

    Article  ADS  Google Scholar 

  5. U. Völkel, “Elektron-Photon-Kaskaden in Blei für Primärteilchen der Energie 6 GeV”, DESY report DESY 65/6 (1965); “A Monte-Carlo Calculation of Cascade Showers in Copper Due to Primary Photons of 1 GeV, 3 GeV, and 6 GeV, and 6-GeV Bremsstrahlung Spectrum”, DESY report DESY 67/16 (1967).

    Google Scholar 

  6. H. Messel and D. F. Crawford, Electron-Photon Shower Distribution Function, ( Pergamon Press, Oxford, 1970 ).

    Google Scholar 

  7. R. L. Ford and W. R. Nelson, “The EGS Code System: Computer Programs for the Monte Carlo Simulation of Electromagnetic Cascade Showers (Version 3)”, Stanford Linear Accelerator Center report SLAC-210 (1978).

    Google Scholar 

  8. S. Iwata, “Calorimeter”, Nagoya University Department of Physics report DPNU-13-80 (1980).

    Google Scholar 

  9. J. Engler, “Perspectives in Calorimetry”, Nucl. Instr. Meth. 235 (1985) 301.

    Article  ADS  Google Scholar 

  10. P. Blüm, H. Guigas, H. Kock, M. Meyer, H. Poth, U. Raid, B. Richter, G. Backenstoss, M. Hasinoff, P. Pavlopoulos, J. Repond, L. Tauscher, D. Troster, L. Adiels, I. Bergstrom, K. Fransson, A. Kerek, M. Suffert and K. Zioutas, “A Modular Nal(Tℓ) Detector for 20-1000 MeV Photons”, Nucl. Instr. Meth. 213 (1983) 251.

    Article  Google Scholar 

  11. D. F. Anderson, G. Charpak, W. Kusmierz, P. Pavlopoulos and M. Suffert, “Test Results of a BaF2 Calorimeter Shower with Wire Chamber Readout”, Nucl. Instr. Meth. 228 (1984) 33.

    Article  ADS  Google Scholar 

  12. U. Amaldi,“Fluctuations in Calorimetry Measurements”, Physica Scripta 23 (1981) 409.

    Article  ADS  Google Scholar 

  13. A. Abashian, J. Bjorken, C. Church, S. Ecklund, L. Mo, W. R. Nelson, T. Nunamaker, P. Rassman and D. Scherer, “Search for Neutral, Penetrating, Metastable Particles Produced in the SLAC Beam Dump”, presented at the Fourth Moriond Workshop on Massive Neutrinos in Particle and Astrophysics, LaPlagne, France (15–21 January 1984 ).

    Google Scholar 

  14. A. J. Cook, “Mortran3 User’s Guide”, SLAC Computation Research Group technical memorandum CGTM 209 (1983).

    Google Scholar 

  15. H. Hirayama, W. R. Nelson, A. Del Guerra, T. Mulera and V. Perez-Mendez, “Monte Carlo Studies for the Design of a Lead-glass Drift Calorimeter”, Nucl. Instr. Meth. 220 (1984) 327.

    Article  Google Scholar 

  16. L. E. Price, “Drift-Collection Calorimeter”, Physica Scripta 23 (1980) 685.

    Article  ADS  Google Scholar 

  17. H. G. Fisher and O. Ullaland, “A High Density Projection Chamber”, IEEE Trans. Nucl. Sci. NS-27 (1980) 38.

    Article  ADS  Google Scholar 

  18. T. Mulera and V. Perez-Mendez, “Observation of Large Saturated Pulses in Wire Chambers Filled With Ar-C02 Mixtures”, Nucl. Instr. Meth. 203 (1982) 609; (see references therein).

    Article  Google Scholar 

  19. M. Conti, A. Del Guerra, R. Habel, T. Mulera, V. Perez-Mendez, G. Schwartz, “Use of a High Lead Glass Tubing Projection Chamber in Positron Emission Tomography and in High Energy Physics”, Nucl. Instr. Meth., A225 (1987) 207.

    Article  ADS  Google Scholar 

  20. T. Mulera, V. Perez-Mendez, H. Hirayama, W. R. Nelson, R. Bellazzini, A. Del Guerra, M. M. Massai, “Drift Collection Calorimetry Using a Combined Radiator and Field Shaping Structure of Lead Glass Tubing”, IEEE Trans. Nucl. Sci. NS-31 (1984) 64.

    Article  ADS  Google Scholar 

  21. D. Hitlin, J. F. Martin, C. C. Morehouse, G. S. Abrams, D. Briggs, W. Carithers, S. Cooper, R. Devoe, C. Friedberg, D. Marsh, S. Shannon, E. Vella and J. S. Whitaker, “Test of a Lead-Liquid Argon Electromagnetic Shower Detector”, Nucl. Instr. Meth. 137 (1976) 225.

    Article  Google Scholar 

  22. A. Del Guerra, M. Conti, G. Gorini, P. Lauriola, P. Maiano and C. Rizzo, “Energy Resolution Measurements of a Lead Glass Drift Calorimeter Prototype”, presented at the IEEE Nuclear Science Symposium, San Francisco, 21 – 23 October 1987.

    Google Scholar 

  23. K. Kleinknecht, Detectors for Particle Radiation, ( Cambridge University Press, Cambridge, 1986 ).

    Book  Google Scholar 

  24. D. H. Perkins, Introduction to High Energy Physics(Addison-Wesley Publishing Co., Menlo Park, CA, 1987 ).

    Google Scholar 

  25. P. A. Aarnio, A. Fasso, H. J. Moehring, J. Ranft and G. R. Stevenson, “FLUKA86 User’s Guide”, CERN Divisional report TIS-RP/168 (1986).

    Google Scholar 

  26. P. A. Aarnio, J. Lindgren, J. Ranft, A. Fasso and G. R. Stevenson, “Enhancements to the FLUKA86 Program (FLUKA87)”, CERN Divisional report TIS- RP/190 (1987).

    Google Scholar 

  27. J. Ranft, H. J. Möhring, T. M. Jenkins and W. R. Nelson, “The Hadron Cascade Code FLUKA82: Setup and Coupling with EGS4 at SLAC”, Stanford Linear Accelerator Center report SLAC-TN-86-3 (1986).

    Google Scholar 

  28. K. C. Chandler and T. W. Armstrong, “Operating Instructions for the High-Energy Nucleon-Meson Transport Code, HETC”, Oak Ridge National Laboratory report ORNL-4744 (1972).

    Google Scholar 

  29. F. S. Alsmiller, T. A. Gabriel, R. G. Alsmiller, “Hadron-Lepton Cascade Calculations (1–20 GeV) for a Pb-Al-Lucite Calorimeter”, Oak Ridge National Laboratory report ORNL/TM-9153 (1984).

    Google Scholar 

  30. J. Ranft and W. R. Nelson, “Hadron Cascades Induced by Electron and Photon Beams in the GeV Energy Range”, Nucl. Instr. Meth. A257 (1987) 177.

    Article  ADS  Google Scholar 

  31. G. E. Fischer (for the SLAC Staff), “SLC—Status and Development”, Stanford Linear Accelerator Center report SLAC-PUB-4012 (1986).

    Google Scholar 

  32. T. M. Jenkins and W. R. Nelson, “Unique Radiation Problems Associated with the SLAC Linear Collider”, Stanford Linear Accelerator Center report SLAC- PUB-4179 (1986); CONF 8602106, Invited talk at the Midyear Symposium of the Health Physics Society (Reno, Nevada, February 8 – 12, 1987 ).

    Google Scholar 

  33. S. Ecklund and W. R. Nelson, “Energy Deposition and Thermal Heating in Materials Due to Low Emittance Electron Beams”, Stanford Linear Accelerator Center collider note CN-135 (1981).

    Google Scholar 

  34. W. R. Nelson and T. M. Jenkins, “Temperature Rise Calculations for the Beam Pipe in the SLC Arcs”, Stanford Linear Accelerator Center collider note CN-235 (1983).

    Google Scholar 

  35. W. R. Nelson and T. M. Jenkins, “Temperature Rise in Iron Beam Position Monitors”, Stanford Linear Accelerator Center collider note CN-276 (1984).

    Google Scholar 

  36. J. Schwinger, “On the Classical Radiation of Accelerated Electrons”, Phys. Rev. 75 (1949) 1912.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. W. R. Nelson, G. J. Warren and R. L. Ford, “The Radiation Dose to the Coil Windings and the Production of Nitric Acid and Ozone from PEP Synchrotron Radiation”, Stanford Linear Accelerator Center PEP note PEP-109 (1975).

    Google Scholar 

  38. W. R. Nelson and J. W. N. Tuyn, “Neutron Production by LEP Synchrotron Radiation Using EGS”, CERN internal report CERN-HS-RP/037 (1979); also distributed as LEP Note 187 (1979).

    Google Scholar 

  39. T. M. Jenkins and W. R. Nelson, “Synchrotron Radiation in the Collider Arcs”, Stanford Linear Accelerator Center collider note CN-69 (1981).

    Google Scholar 

  40. C. Yamaguchi, “Absorbed Dose and Energy Deposition Calculation Due to Synchrotron Radiation from PETRA, HERA and LEP”, DESY Internal report DESY D3/38 (1981).

    Google Scholar 

  41. T. M. Jenkins and M. Hofert, “The Effects of Synchrotron Radiation from the Wigglers”, CERN internal report CERN-TIS-RP/IR/85-23 (1985).

    Google Scholar 

  42. J. A. Rawlinson, A. F. Bielajew, D. M. Galbraith and P. Munro, “Theoretical and Experimental Investigation of Dose Enhancement Due to Charge Storage in Electron-Irradiated Phantoms”, Med. Phys. 11 (1984) 814.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Del Guerra, A., Nelson, W.R. (1988). High-Energy Physics Applications of EGS. In: Jenkins, T.M., Nelson, W.R., Rindi, A. (eds) Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1059-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1059-4_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8314-0

  • Online ISBN: 978-1-4613-1059-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics