Skip to main content

Three-Dimensional Dose Calculation for Total Body Irradiation

  • Chapter
Monte Carlo Transport of Electrons and Photons

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 38))

Abstract

Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases1. Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor’s marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere2,3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. D. Thomas, “Marrow Transplantation for Malignant Diseases”, Jour. Clinical Oncology 1 (1983) 519.

    Google Scholar 

  2. G. P. Glasgow, “The Dosimetry of Fixed, Single Source Hemibody and Total Body Irradiators”, Med. Phys. 9 (1982) 311.

    Article  Google Scholar 

  3. J. J. Broerse and A. Dutreix, “Physical Aspects of Total Body Irradiation”, J. Eur. Radiother. 3, (1982) 187.

    Google Scholar 

  4. J. R. Cunningham, Progress in Medical Radiation Physics, Vol. 1, edited by C. G. Orton, ( Plenum Press, 1982 ) 103.

    Book  Google Scholar 

  5. S. Webb and R. P. Parker, “A Monte Carlo Study of the Interaction of External Beam X-radiation with Inhomogeneous Media”, Phys. Med. Biol. 23 (1978) 1043.

    Article  Google Scholar 

  6. S. Webb and R. A. Fox, “Verification by Monte Carlo Methods of a Power Law Tissue-air Ratio Algorithm for Inhomogeneity Corrections in Photon Beam Dose Calculation”, Phys. Med. Biol. 25 (1980) 225.

    Article  Google Scholar 

  7. A. Ito, “Three Dimensional Dose Calculation by the Monte Carlo Method”, Radiat. Therapy Sys. Res. 2 (SI) (1985) 25.

    Google Scholar 

  8. P. K. Kijewski, B. E. Bjarngard and P. L. Petti, “Monte Carlo Calculations of Scatter Dose for Small Field Sizes in a 60Co Beam”, Med. Phys. 13 (1986) 74.

    Article  Google Scholar 

  9. R. Mohan, C. Chui and L. Lidofsky, “Differential Pencil Beam Dose Computation Model for Photons”, Med. Phys. 13 (1981) 64.

    Article  Google Scholar 

  10. K. Han, D. Ballon, C. Chui and R. Mohan, “Monte Carlo Simulation of a Cobalt-60 Beam”, Med. Phys. 14 (1987) 414.

    Article  Google Scholar 

  11. J. F. Williamson, “Monte Carlo Evaluation of Kerma at a Point for Photon Transport Problems”, Med. Phys. 14 (1987) 567.

    Article  Google Scholar 

  12. W. R. Nelson, H. Hirayama and D. W. O. Rogers, “The EGS4 Code System”, Stanford Linear Accelerator report SLAC-265 (1985).

    Google Scholar 

  13. J. W. Wong, R. M. Henkelman, A. Fenster and H. E. Johns, “Second Scatter Contribution to Dose in a Cobalt-60 Beam”, Med. Phys. 8, (1981) 775.

    Article  Google Scholar 

  14. J. H. Hubbell, “Photon Mass Attenuation and Mass Energy-Absorption Coefficients for H, C, N, O, Ar and Seven Mixtures from 0.1 keV to 20 Mev”, Radiat. Res. 70 (1977) 58.

    Article  Google Scholar 

  15. A. Ito, Chapter 16, this book.

    Google Scholar 

  16. M. J. Berger and S. M. Seltzer, “Stopping Powers and Ranges of Electrons and Positrons”, NBSIR 82-2550-A (1982).

    Google Scholar 

  17. M. J. Day et al, “Central Axis Depth Dose Data for Use in Radiotherapy”, Brit. J. Radiol., Suppl. 17 (1983).

    Google Scholar 

  18. P. Ekström, H. Dahlin and B. Hongström, “A Generalized Format Specification for Use of CT Information in Radiotherapy Dose Calculation”, in Proc. of the Seventh ICCR, Tokyo, Japan, Sept. 22–26, 1980, edited by Y. Umegaki, p. 491.

    Google Scholar 

  19. P. W. Henson and R. A. Fox, “The Electron Density of Bone for Inhomogeneity Correction in Radiotherapy Planning Using CT Numbers”, Phys. Med. Biol. 29, (1984) 351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Ito, A. (1988). Three-Dimensional Dose Calculation for Total Body Irradiation. In: Jenkins, T.M., Nelson, W.R., Rindi, A. (eds) Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1059-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1059-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8314-0

  • Online ISBN: 978-1-4613-1059-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics