Simulation of Dosimeter Response and Interface Effects

  • A. E. Nahum
Part of the Ettore Majorana International Science Series book series (EMISS, volume 38)

Abstract

A dosimeter measures the absorbed dose at some specified point in the irradiated medium, D m . The dosimeter yields a signal, be it charge, light intensity, change in absorbance, etc., which is proportional to the amount of energy absorbed in the sensitive element of the dosimeter, the “cavity”, D c . It will be assumed that the relationship between the signal and D c is known. In general, this sensitive material will differ in its radiation-absorption properties from that of the surrounding medium, and furthermore, it may be surrounded by wall of yet another material (e.g., a graphite-walled air-filled ionization chamber in water).

Keywords

Graphite Lithium Attenuation Fluoride Polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. S. Horowitz, “Photon General Cavity Theory”, Radiat. Prot. Dosimetry 9 (1984) 5.MathSciNetGoogle Scholar
  2. 2.
    P. Andreo, “Stopping-Power Ratios for Dosimetry”, Chapter 23, this volume.Google Scholar
  3. 3.
    L. V. Spencer and F. H. Attix, “A theory of Cavity Ionization”, Rad. Res. 3 (1955) 239.CrossRefGoogle Scholar
  4. 4.
    A. E. Nahum, W. H. Henry and C. K. Ross, “Response of Carbon- and Aluminium- Walled Thimble Chambers in 60Co and 20-MeV Electron Beams”, Med. and Biol. Eng. and Computing 23 Suppl. Part I, Proceedings of the VII ICMP, Espoo (1985) 612.Google Scholar
  5. 5.
    J. Dutreix, A. Dutreix and M. Bernard, “Étude de la dose au voisinage de l’interface entre deux milieux de composition atomique différente exposés aux rayonnement γdu 60Co”, Phys. Med. Biol. 7 (1962) 69.CrossRefGoogle Scholar
  6. 6.
    G. Alm Carlsson, “Dosimetry at Interfaces: Theoretical Analysis and Measurements by Means of Thermoluminescent LiF”, Acta Radiol. Suppl. (1973) 332.Google Scholar
  7. 7.
    L. de Freitas, Chapter 4 in Inhomogeneity Corrections in Radiation Treatment Planning, Thesis, University of London (1982).Google Scholar
  8. 8.
    A. F. Adadurov and V. T. Lazurik, “Distribution of Absorbed Energy in a Layered Target Irradiated with γ-rays”. Translated from A. Energ. 43 (1977) 57.Google Scholar
  9. 9.
    M. J. Berger, “Monte-Carlo Calculations of the Penetration and Diffusion of Fast Charged Particles”, in Methods in Computational Physics, Vol. 1, edited by B. Alder, S. Fernbach and M. Rotenberg, ( Academic Press, New York, 1963 ) 135.Google Scholar
  10. 10.
    A. E. Nahum, “Overview of Photon and Electron Monte Carlo”, Chapter 1, this volume.Google Scholar
  11. 11.
    A. Ito, “Electron Track Simulation for Microdosimetry”, Chapter 16, this volume.Google Scholar
  12. 12.
    W. R. Nelson, H. Hirayama and D. W. O. Rogers, “The EGS4 Code System”, Stanford Linear Accelerator Center report SLAC-265 (1985).Google Scholar
  13. 13.
    D. W. O. Rogers, “Fluence to Dose Equivalent Conversion Factors Calculated with EGS3 for Electrons from 100 keV to 20 GeV and Photons from 11 keV to 20 GeV”, Health Phys. 46 (1984) 891.CrossRefGoogle Scholar
  14. 14.
    D. W. O. Rogers, “Low Energy Electron Transport with EGS”, Nucl. Instr. Meth. A 227 (1984) 535.ADSCrossRefGoogle Scholar
  15. 15.
    A. F. Bielajew. “Electron Step-Size Artefacts and PRESTA” Chapter 5, this volume.Google Scholar
  16. 16.
    A. F. Bielajew and D. W. O. Rogers, “PRESTA: The Parameter Reduced Electron-Step Transport Algorithm for Electron Monte Carlo Transport”, Nucl. Instr. Meth. B18 (1987) 165.ADSGoogle Scholar
  17. 17.
    H. Svensson and A. Brahme. “Recent Advances in Electron and Photon Dosimetry” in Radiation Dosimetry - Physical and Biological Aspects, edited by C. G. Orton, ( Plenum Press, New York, 1986 ) 87.Google Scholar
  18. 18.
    AAPM (American Association of Physicists in Medicine). “A Protocol for the Determination of Absorbed Dose from High-Energy Photon and Electron Beams”, Med. Phys. 10 (1983) 741.CrossRefGoogle Scholar
  19. 19.
    International Commission on Radiation Units and Measurements, “Radiation Dosimetry: Electron Beams with Energies between 1 and 50 MeV”, ICRU Report 35 (1984).Google Scholar
  20. 20.
    A. F. Bielajew, “Ionisation Cavity Theory: A Formal Derivation of Perturbation Factors for Thick-Walled Ion Chambers in Photon Beams”, Phys.in Med. Biol. 31 (1986) 161.ADSCrossRefGoogle Scholar
  21. 21.
    R. Nath and R. J. Schulz, “Calculated Response and Wall Correction Factors for Ionization Chambers Exposed to 60Co Gamma Rays”, Med. Phys. 8 (1981) 85.CrossRefGoogle Scholar
  22. 22.
    A. E. Nahum and M. Kristensen, “Calculated Response and Wall Correction Factors for Ionization Chambers Exposed to 60Co Gamma Rays”, Med. Phys. 9 (1982) 925.CrossRefGoogle Scholar
  23. 23.
    A. C. McEwan and V. G. Smyth, “Comments on Calculated Response and Wall Correction Factors for Ionization Chambers Exposed to 60Co Gamma-Rays”, Med. Phys. 11 (1984) 216.CrossRefGoogle Scholar
  24. 24.
    A. F. Bielajew, D. W. O. Rogers and A. E. Nahum, “The Monte Carlo Simulation of Ion Chamber Response to 60Co—Resolution of Anomalies Associated with Interfaces”, Phys. in Med. Biol. 30 (1985) 419.ADSCrossRefGoogle Scholar
  25. 25.
    D. W. O. Rogers, A. F. Bielajew, A. E. Nahum, “Ion Chamber Response and Awall Correction Factors in a Co-60 Beam by Monte Carlo Simulation”, Phys. in Med. Biol. 30 (1985) 429.ADSCrossRefGoogle Scholar
  26. 26.
    J. E. Bond, Ravinder Nath and R. I. Schulz, “Monte Carlo Calculation of the Wall Correction Factors for Ionization Chambers and A eqfor 60Co δ-Rays”, Med. Phys. 5 (1978) 422.CrossRefGoogle Scholar
  27. 27.
    V. G. Smyth and A. G. McEwan, “Interface Artefacts in Monte Carlo Calculations”, letter in Phys. in Med. and Biol. 31 (1986) 299.ADSCrossRefGoogle Scholar
  28. 28.
    V. G. Smyth, “Interface Effects in the Monte Carlo Simulation of Electron Tracks”, Med. Phys. 13 (1986) 196.CrossRefGoogle Scholar
  29. 29.
    A. F. Bielajew and D. W. O. Rogers, “Interface Artefacts in Monte Carlo Calculations”, letter in Phys. in Med. and Biol. 31 (1986) 301.ADSCrossRefGoogle Scholar
  30. 30.
    A. E. Nahum, W. H. Henry and C. K. Ross, “Response of Carbon and Aluminium-Walled Thimble Chambers in 60Co and 20-MeV Electron Beams”, Med. and Biol. Eng. and Computing 23 (1985) Suppl. Part 1, p.612. ( Proceedings of the VII ICMP, Espoo, 1985 ).Google Scholar
  31. 31.
    M. A. Mandour, “The Influence of Cylindrical Air Cavities on Fluence Distributions of High Energy Electrons”, Nucl. Instr. Meth. A254 (1987) 434.ADSCrossRefGoogle Scholar
  32. 32.
    L. Olofsson and A. E. Nahum, “An Improved Theoretical Evaluation of the Perturbation Factors for Ionisation Chambers in Electron Beams”, Med. and Biol. Eng. and Computing 23 (1985) Suppl.Part 1, p.619. ( Proceedings of the VII ICMP, Espoo, 1985 ).Google Scholar
  33. 33.
    A. F. Bielajew and A. E. Nahum, unpublished.Google Scholar
  34. 34.
    S. Webb, “The Absorbed Dose in the Vicinity of an Interface Between Two Media Irradiated by a 60Co Source”, Brit. J. of Radiol. 52 (1979) 962.CrossRefGoogle Scholar
  35. 35.
    D. W. O. Rogers and A. F. Bielajew, “The Use of EGS for Monte Carlo Calculations in Medical Physics”, report PXNR-2692 (National Research Council of Canada) 1984.Google Scholar
  36. 36.
    E. Kearsley, “A New General Cavity Theory”, Phys. in Med. Biol. 29 (1984) 1179.Google Scholar
  37. 37.
    O. T. Ogunleye, F. H. Attix and B. R. Paliwal, “Comparison of Burlin Cavity Theory with LiF TLD Measurements for Cobalt-60 Gamma-Rays”, Phys. in Med. Biol. 25 (1980) 203.ADSCrossRefGoogle Scholar
  38. 38.
    A. F. Bielajew and D. W. O. Rogers, “A Comparison of Experiment with Monte Carlo Calculations of TLD Response”, presented at AAPM annual meeting, 1986 (unpublished).Google Scholar
  39. 39.
    Y. S. Horowitz, M. Moscovitch, J. M. Mack, H. Hsu and E. Kearsley, “Incorporation of Monte Carlo Electron Interface Studies into Photon General Cavity Theory”, Nucl. Sci. Eng. 94 (1986) 233.CrossRefGoogle Scholar
  40. 40.
    J. C. Garth, E. A. Burke and S. Woolf, “The Role of Scattered Radiation in the Dosimetry of Small Device Structures”, IEEE Trans, on Nucl. Sci. NS-27 (1980) 1459.ADSCrossRefGoogle Scholar
  41. 41.
    J. A. Wall and E. A. Burke, “Gamma Dose Distributions At or Near the Interface of Different Materials”, IEEE Trans, on Nucl. Sci. NS-17 (1970) 305.ADSCrossRefGoogle Scholar
  42. 42.
    S. M. Seltzer and M. J. Berger, “Energy Deposition by Electron, Bremsstrahlung, and Co-60 Gamma-Ray Beams in Multi-Layer Media”, Int. J. Appl. Radiat. and Isot. 38 (1987) 349.CrossRefGoogle Scholar
  43. 43.
    G. J. Lockwood, L. E. Ruggles, G. H. Miller and J. A. Halbleib, “Calorimetric Measurement of Electron Energy Deposition in Extended Media — Theory vs Experiment”, Sandia Laboratories report SAND79-0414 (1980).Google Scholar
  44. 44.
    J. A. Halbleib, “Structure and Operation of the ITS Code System”, Chapter 10, this volume.Google Scholar
  45. D. W. O. Rogers, Private communication (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. E. Nahum
    • 1
  1. 1.Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden HospitalSutton, SurreyUK

Personalised recommendations