Skip to main content

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 38))

Abstract

Electron pencil beams have become an important research tool in different applications of electron dosimetry. The simplified configuration needed to perform Monte Carlo calculations of electron pencil beams contrasts with the increasing degree of sophistication of special-purpose simulations that follow as closely as possible certain geometrical configurations. Most of the existing calculations on pencil beams are based on a detailed simulation of electron transport, but they are usually obtained in an homogeneous medium (water in most of the cases) and very little computational effort is required to scored the desired distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Brahme, “ Physics of Electron Beam Penetration: Fluence and Absorbed Dose”, in Proc. of the Symp. on Electron Dosimetry and Arc Therapy, edited by B. J. Paliwal, ( American Institute of Physics, New York, 1982 ) 45.

    Google Scholar 

  2. R. M. Sternheimer, “Multiple Scattering Correction for Counter Experiments”, Rev. Sci. Instr. 25 (1954) 1070.

    Article  ADS  Google Scholar 

  3. ICRU (International Commission on Radiation Units and Measurements), “Radiation Quantities and Units”, ICRU Report 33 (1984)

    Google Scholar 

  4. ICRU (International Commission on Radiation Units and Measurements), “Radiation Dosimetry: Electrons with Initial Energies Between 1 and 50 MeV”, ICRU Report 21 (1972.)

    Google Scholar 

  5. M. J. Berger and S. M. Seltzer, “Theoretical Aspects of Electron Dosimetry”, in Proc. of the Symp. on Electron Dosimetry and Arc Therapy, edited by B.J. Paliwal, ( American Institute of Physics, New York, 1982 ) 1.

    Google Scholar 

  6. P. Andreo, “Monte Carlo Simulation of Electron Transport in Water. Absorbed Dose and Fluence Distributions”, Dept. of Nuclear Physics, University of Zaragoza, Spain, report FANZ/80/3 (1980).

    Google Scholar 

  7. P. Andreo, “Aplicación del Método de Monte Carlo a la Penetración y Dosimetría de Haces de Electrones”, Thesis, University of Zaragoza, Spain (1981).

    Google Scholar 

  8. P. Andreo and A. Brahme, “Fluence, Energy Fluence and Absorbed Dose in High Energy Electron Beams”, Department of Radiation Physics, Karolinska Institute, Stockholm, report RI 1982-05 (1982); see also Acta Radiol. Suppl. 364 (1983) 25.

    Google Scholar 

  9. A. Brahme, I. Lax and P. Andreo, “Electron Beam Dose Planning Using Discrete Gaussian Beams: Mathematical Background”, Acta Radiol. Oncol. 20 (1981) 147.

    Article  Google Scholar 

  10. I. Lax, A. Brahme and P. Andreo, “Electron Beam Dose Planning Using Gaussian Beams. Improved Radial Dose Profiles”, Acta Radiol. Suppl. 364 (1983) 49.

    Google Scholar 

  11. P. Andreo and A. Brahme, “Mean Energy in Electron Beams”, Med. Phys. 8 (1981) 682.

    Article  Google Scholar 

  12. P. Andreo and A. Brahme, “Stopping Power Data for High Energy Photon Beams”, Phys. Med. Biol. 31 (1986) 839.

    Article  Google Scholar 

  13. A. Brahme and P. Andreo, “Dosimetry and Quality Specification of High Energy Photon Beams”, Acta Radiol. Oncol. 25 (1986) 213.

    Article  Google Scholar 

  14. P. Andreo and A. E. Nahum, “Stopping-Power Ratio for a Photon Spectrum as a Weighted Sum of the Values for Monoenergetic Photon Beams”, Phys. Med. Biol. 30 (1985) 1055.

    Article  Google Scholar 

  15. P. Andreo and A. E. Nahum, “Influence of Initial Energy Spread in Electron Beams on the Depth-Dose Distribution and Stopping-Power Ratios”, Proceedings of the XIV ICMBE and VII ICMP, Espoo, Finland (1985) 608.

    Google Scholar 

  16. M. J. Berger, “Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles”, In Methods in Computational Physics, Vol.1, Statistical Physics, edited by B. Alder, S. Fernbach and M. Rotenberg, ( Academic Press, New York, 1963 ) 135.

    Google Scholar 

  17. P. Andreo and A. Brahme, “Restricted Energy Loss Straggling and Multiple Scattering of Electrons in Mixed Monte Carlo Procedures”, Radiat. Res. 100 (1984) 16.

    Article  Google Scholar 

  18. C. Møller,“Zur Theorie des Durchgangs Schneller Elektronen Durch Materie”, Ann. Physok. 14 (1932) 531.

    Article  MATH  Google Scholar 

  19. W. A. McKinley and H. F. Feshback, “The Coulomb Scattering of Relativistic Electrons by Nuclei”, Phys. Rev. 74 (1948) 1759.

    Article  ADS  Google Scholar 

  20. L. V. Spencer, “Theory of Electron Penetration”, Phys. Rev. 98 (1955) 1597.

    Article  ADS  MATH  Google Scholar 

  21. H. W. Koch and J. W. Motz, “Bremsstrahlung Cross-section Formulas and Related Data”, Rev. Mod. Phys. 31 (1959) 920.

    Article  ADS  Google Scholar 

  22. P. Andreo, “Monte Carlo Simulation of Electron Transport. Principles and Some General Results”, in The Computation of Dose Distributions in Electron Beam Radiotherapy, edited by A. E. Nahum, ( University of Umeå, Sweden, 1985 ) 80.

    Google Scholar 

  23. G. Molière, “Theorie der Streuung Schneller Geladener Teilchen. I. Einzelstreuung am Abgeschirmten Coulom-Feld”, Z. Naturforsch. A2 (1947) 133.

    ADS  Google Scholar 

  24. G. Molière, “Theorie der Streuung Schneller Geladener Teilchen. II. Mehrfach- und Vielfachstreuung”, Z. Naturforsch. A3 (1947) 78.

    Google Scholar 

  25. M. J. Berger and S. M. Seltzer, “Tables of Energy Deposition Distributions in Water Phantoms Irradiated by Point-monodirectional Electron Beams with Energies from 1 to 60 MeV and Applications to Broad Beams”, National Bureau of Standards report NBSIR 82 - 2451 (1982).

    Google Scholar 

  26. ICRU (International Commission on Radiation Units and Measurements),”Radiation Dosimetry: Electron Beams with Energies between 1 and 50 MeV”, ICRU Report 35 (1980).

    Google Scholar 

  27. Kellerer, “Considerations in the Random Traversal of Convex Bodies and Solutions for General Cylinders”, Radiat. Res. 47 (1971) 359.

    Article  Google Scholar 

  28. A. Brahme, “Elements of Electron Transport Theory”, in The Computation of Dose Distributions in Electron Beam Radiotherapy, edited by A. E. Nahum, ( University of Umeå, Sweden, 1985 ) 72.

    Google Scholar 

  29. E. Fermi, cited by Rossi and Greissen in Cosmic Ray Theory, Rev. Mod. Phys. 13 265 (1941).

    Google Scholar 

  30. L. Eyges, “Multiple Scattering with Energy Loss”, Phys. Rev. 74 (1948) 1534.

    Article  ADS  Google Scholar 

  31. F. Nüsslin, “Computerized Treatment Planning in Therapy with Fast Electrons: A Review of Procedures for Calculating Dose Distributions”, Medicamundi 24 (1979) 112.

    Google Scholar 

  32. K. R. Hogstrom, “Electron Beam Modeling and Dose Calculation Algorithms in Treatment Planning Computers”, in Continuing Education Course at the 1982 AAPM Annual Meeting, Med. Phys. 9 (1982) 645.

    Google Scholar 

  33. A. Brahme, “Brief Review of Current Algorithms for Electron Beam Dose Planning”, in The Computation of Dose Distributions in Electron Beam Radiotherapy, edited by A.E. Nahum, ( University of Umeå, Sweden, 1985 ) 271.

    Google Scholar 

  34. R. Mohan, R. Riley and J. S. Laughlin, “Electron Beam Treatment Planning: A Review of Dose Computation Methods”, in Computed Tomography in Radiation Therapy, edited by C. C. Ling, C. C. Rogers and R. J. Morton, ( Raven Press, New York, 1983 ) 229.

    Google Scholar 

  35. A. F. Bielajew, D. W. O. Rogers, J. Cygler and J. J. Battista, “A Comparison of Electron Pencil Beam and Monte-Carlo Calculational Methods”, in The Use of Computers in Radiation Therapy, edited by I. A. D. Bruinvis, et al, ( Elseviere Science Publishers B.V., Holland, 1987 ) 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Andreo, P. (1988). Electron Pencil-Beam Calculations. In: Jenkins, T.M., Nelson, W.R., Rindi, A. (eds) Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1059-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1059-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8314-0

  • Online ISBN: 978-1-4613-1059-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics