Geometry Methods and Packages

  • Walter R. Nelson
  • Theodore M. Jenkins
Part of the Ettore Majorana International Science Series book series (EMISS, volume 38)

Abstract

The trajectory of a particle in a Monte Carlo calculation can be described by position and direction vectors
$$\mathop{{{\text{ }}X}}\limits^{ \to } = x\hat{i} + y\hat{j} + z\hat{k}$$
(17.1)
and
$$\hat{U} = u\hat{i} + v\hat{j} + w\hat{k}$$
(17.2)
, respectively, where (x,y,z) are the coordinates of the particle at point P(x,y,z) (e.g., see figures below), and (u,v,w) are its direction cosines (the symbol” denotes a unit vector). These quantities, together with such things as particle type, energy, weight, time, etc., define the state function of the particle.

Keywords

Clarification Cylin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. R. Nelson, H. Hirayama and D. W. O. Rogers, “The EGS4 Code System”, SLAC-265 (1985).Google Scholar
  2. 2.
    G. R. Stevenson, “A Cylindrical Geometry Package for HOWFAR in the EGS Electron Gamma Shower Program”, CERN internal report HS-RP/TM/80–78 (1980); also of related interest: G. R. Stevenson and T. Lund, “A Spherical-Conical Geometry Package for HOWFAR in the EGS Electron Gamma Shower Program”, CERN internal report HS-RP/TM/81–30 (1981).Google Scholar
  3. 3.
    E. A. Straker, P. N. Stevens, D. C. Irving and V. R. Cain, “MORSE-CG, General Purpose Monte-Carlo Multigroup Neutron and Gamma-Ray Transport Code With Combinatorial Geometry”, Radiation Shielding Information Center (ORNL) report CCC-203 (1976).Google Scholar
  4. 4.
    P. A. Aarnio, A. Fasso, H. J. Moehring, J. Ranft and G. R. Stevenson, “FLUKA86 User’s Guide”, CERN Divisional report TIS-RP/168 (1986).Google Scholar
  5. 5.
    P. A. Aarnio, J. Lindgren, J. Ranft, A. Fasso and G. R. Stevenson, “Enhancements to the FLUKA86 Program (FLUKA87)”, CERN Divisional report TIS-RP/190 (1987).Google Scholar
  6. 6.
    A. J. Cook, “Mortran3 User’s Guide”, SLAC Computation Research Group technical memorandum CGTM 209 (1983).Google Scholar
  7. 7.
    W. R. Nelson and T. M. Jenkins, “Writing SUBROUTINE HOWFAR for EGS4”, Stanford Linear Accelerator report SLAC-TN-87–4 (1987).Google Scholar
  8. 8.
    Private communication with D. W. O. Rogers, National Research Council of Canada (1987).Google Scholar
  9. 9.
    G. R. Stevenson, “A 3-Dimensional Cartesian Geometry Package for HOWFAR in the EGS Electron Gamma Shower Program”, CERN Internal report HS- RP/TM/80–60 (1980).Google Scholar
  10. 10.
    W. Guber, J. Nagel, R. Goldstein, P. S. Mettelman and M. H. Kalos, “A Geometric Description Technique Suitable for Computer Analysis of Both the Nuclear and Conventional Vulnerability of Armored Military Vehicles”, Mathematical Applications Group, Inc. report MAGI-6701 (1967).Google Scholar
  11. 11.
    J. A. Halbleib, “ACCEPT: A Three-Dimensional Electron/Photon Monte Carlo Transport Code Using Combinatorial Geometry”, Sandia National Laboratories report SAND 79-0415 (1979); Nucl. Sci. Eng. 75 (1980) 200.Google Scholar
  12. 12.
    M. J. Berger and S. M. Seltzer, “ETRAN Monte Carlo Code System for Electron and Photon Transport Through Extended Media”, Oak Ridge National Laboratory (RSIC) report CCC-107 (1968).Google Scholar
  13. 13.
    Private communication with S. M. Seltzer (August 1987).Google Scholar
  14. 14.
    J. A. Halbleib and W. H. Vandevender, “TIGER, A One-Dimensional Multilayer Electron/Photon Monte Carlo Transport Code”, Nucl. Sci. Eng. 57 (1975) 94.Google Scholar
  15. 15.
    J. A. Halbleib and W. H. Vandevender, “CYLTRAN: A Cylindrical- Geometry Multimaterial Electron/Photon Monte Carlo Transport Code”, Nucl. Sci. Eng. 61 (1976) 288.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Walter R. Nelson
  • Theodore M. Jenkins
    • 1
  1. 1.Radiation Physics GroupStanford Linear Accelerator CenterStanfordUSA

Personalised recommendations