Skip to main content

Structure and Operation of the ITS Code System

  • Chapter
Book cover Monte Carlo Transport of Electrons and Photons

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 38))

Abstract

The TIGER series of time-independent coupled electron-photon Monte Carlo transport codes is a group of multimaterial and multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron-photon cascade by combining microscopic photon transport with a macroscopic random walk1 for electron transport. Major contributors to its evolution are listed in Table 10.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Berger, “Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles” in Methods in Computational Physics, Vol. 1, edited by B. Adler, S. Fernbach and M. Rotenberg, ( Academic Press, New York, 1963 ).

    Google Scholar 

  2. J. A. Halbleib and T. A. Mehlhorn, “ITS: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes”, Nucl. Sci. Eng., 92, No. 2 (1986) 338.

    Google Scholar 

  3. J. A. Halbleib and W. H. Vandevender, “EZTRAN—A User-Oriented Version of the ETRAN-15 Electron-Photon Monte Carlo Technique”, Sandia National Laboratories report SC-RR-71–0598 (1971).

    Google Scholar 

  4. J. A. Halbleib and W. H. Vandevender, “EZTRAN 2: A User-Oriented Version of the ETRAN-18B Electron-Photon Monte Carlo Technique”, Sandia National Laboratories report SLA-73–0834 (1973).

    Google Scholar 

  5. M. J. Berger and S. M. Seltzer, “ETRAN Monte Carlo Code System for Electron and Photon Transport Through Extended Media”, Radiation Shielding Information Center, Computer Code Collection CCC-107 (1968).

    Google Scholar 

  6. J. A. Halbleib and W. H. Vandevender, “TIGER, A One-Dimensional Multilayer Electron/Photon Monte Carlo Transport Code”, Nucl. Sci. Eng. 57 (1975) 94.

    Google Scholar 

  7. J. A. Halbleib and W. H. Vandevender, “CYLTRAN: A Cylindrical- Geometry Multimaterial Electron/Photon Monte Carlo Transport Code”, Nucl. Sci. Eng. 61 (1976) 288.

    Google Scholar 

  8. J. A. Halbleib, “ACCEPT: A Three-Dimensional Electron/Photon Monte Carlo Transport Code Using Combinatorial Geometry”, Nucl. Sci. Eng. 75 (1980) 200.

    Google Scholar 

  9. W. Guber, J. Nagel, R. Goldstein, P. S. Mettelman and M. H. Kalos, “A Geometric Description Technique Suitable for Computer Analysis of Both the Nuclear and Conventional Vulnerability of Armored Military Vehicles, ”, Mathematical Applications Group, Inc. report MAGI-6701 (1967).

    Google Scholar 

  10. E. A. Straker, W. H. Scott, Jr., and N. R. Byrn, “The MORSE Code with Combinatorial Geometry”, Science Applications, Inc. report SAI-72-511-LJ (DNA 2860T) (1972).

    Google Scholar 

  11. J. A. Halbleib and J. E. Morel, “TIGERP, A One-Dimensional Multilayer Electron/Photon Monte Carlo Transport Code with Detailed Modeling of Atomic Shell Ionization and Relaxation”, Nucl. Sci. Eng. 70 (1979) 219.

    Google Scholar 

  12. J. A. Halbleib and J. E. Morel, Sandia National Laboratories, (unpublished).

    Google Scholar 

  13. H. M. Colbert, “SANDYL: A Computer Code for Calculating Combined Photon-Electron Transport in Complex Systems”, Sandia National Laboratories report SLL-74–0012 (1973).

    Google Scholar 

  14. J. A. Halbleib, Sr., and W. H. Vandevender, “Coupled Electron Photon Collisional Transport in Externally Applied Electromagnetic Fields”, J. Appl. Phys. 48 (1977) 2312.

    Article  ADS  Google Scholar 

  15. L. F. Shampine, H. A. Watts and S. Davenport, “Solving Nonstiff Ordinary Differential Equations—The State of the Art”, SIAM Rev. 18 (1976) 376.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. L. Hiebert and L. F. Shampine, “Implicitly Defined Output Points for Solutions of ODEs”, Sandia National Laboratories report SAND80-0180 (1980).

    Google Scholar 

  17. J. A. Halbleib, R. Hamil and E. L. Patterson, “Energy Deposition Model for the Design of REB-Driven, Large-Volume Gas Lasers”, Conference Record—Abstracts, IEEE International Conference on Plasma Science, May 18–20, Sante Fe, NM, IEEE Catalogue No. 81CH1640-2 NPS, p. 117.

    Google Scholar 

  18. J. A. Halbleib, “SPHERE: A Spherical-Geometry, Mulitmaterial” Electron/Photon Monte Carlo Transport Code”, Nucl. Sci. Eng. 66 (1978) 269.

    Google Scholar 

  19. P. A. Miller, J. A. Halbleib and J. W. Poukey, “Inverse Ion Diode Experiment”, J. Appl. Phys. 52 No. 2 (1981) 593.

    Article  ADS  Google Scholar 

  20. L. G. Haggmark, C. J. MacCallum, and M. E. Riley, “New Scattering Cross Sections for Electron Transport”, Trans. Am. Nucl. Soc. 19 (1974) 471.

    Google Scholar 

  21. R. M. Sternheimer and R. F. Peierls, “General Expression for the Density Effect for the Ionization Loss of Charged Particles”, Phys. Rev. B3 (1971) 3681.

    Article  ADS  Google Scholar 

  22. F. Biggs and R. Lighthill, “Analytical Approximations for X-Ray Cross Sections II”, Sandia National Laboratories report SC-RR-71 0507 (1971).

    Google Scholar 

  23. F. Biggs and R. Lighthill, “Analytical Approximations for Total Pair-Production Cross Sections”, Sandia National Laboratories report SC-RR-68-619 (1968).

    Google Scholar 

  24. J. H. Hubbell, H. A. Gimm and I. Overbo, “Pair, Triplet and Total Atomic Cross Sections (and Mass Attenuation Coefficients) for 1 MeV–100 GeV Photons in Elements Z = 1 to 100”, J. Phys. Chem. Ref. Data 9 (1980) 1023.

    Article  ADS  Google Scholar 

  25. T. A. Mehlhorn and M. F. Young, “UPEML Version 2.0: A Machine-Portable CDC Update Emulator”, Sandia National Laboratories report SAND87–0679 (1987).

    Google Scholar 

  26. “UPDATE, VERSION 1, Reference Manual”, Control Data Corporation report 60449900 (Revision 11/23/81).

    Google Scholar 

  27. W. R. Nelson, H. Hirayama, and D. W. O. Rogers, “The EGS4 Code System”, Stanford Linear Accelerator Center report SLAC-265 (1985).

    Google Scholar 

  28. T. M. Jordan, “An Adjoint Charged Particle Transport Method”, IEEE Trans. Nucl. Sci. NS-23 (1976) 1857.

    Google Scholar 

  29. “MCNP—A General Monte Carlo Code for Neutron and Photon Transport, Version 3B”, edited by J. F. Briesmeister, Los Alamos National Laboratory report LA-7396-M (revised), to be published.

    Google Scholar 

  30. R. G. Schrandt and H. G. Hughes, Los Alamos National Laboratory, to be published.

    Google Scholar 

  31. J. E. Morel and W. M. Taylor, Los Alamos National Laboratory, to be published.

    Google Scholar 

  32. L. J. Lorence, Jr., W. E. Nelson, and J. E. Morel, “Coupled Electron Photon Transport Using, the Method of Discrete Ordinates”, IEEE Trans. Nucl. Sci. NS-32 (1985) 4416.

    Google Scholar 

  33. J. E. Morel and L. J. Lorence, Jr., “Recent Developments in Discrete Ordinates Electron Transport”, Trans. Am. Nucl. Soc. 52 (1986) 384.

    Google Scholar 

  34. T. R. Hill, “ONETRAN: A Discrete Ordinates Finite Element Code for the Solution of the One-Dimensional Multigroup Transport Equation”, Los Alamos National Laboratory report LA-5990-MS (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Halbleib, J. (1988). Structure and Operation of the ITS Code System. In: Jenkins, T.M., Nelson, W.R., Rindi, A. (eds) Monte Carlo Transport of Electrons and Photons. Ettore Majorana International Science Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1059-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1059-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8314-0

  • Online ISBN: 978-1-4613-1059-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics