Advertisement

Neutrophil Elastase and Cathepsin G: Structure, Function, and Biological Control

  • Wieslaw Watorek
  • David Farley
  • Guy Salvesen
  • James Travis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 240)

Abstract

Human neutrophils utilize a variety of destructive enzymes during the process of phagocytosis. These include proteinases, phosphatases, glycosidases, nucleases, and oxidases. The major enzymes have been determined to be elastase, cathepsin G, myeloperoxidase, and lysozyme (1), while minor proteins include collagenase, lactoferrin, alkaline phosphatase, and a myriad of other proteins.

Keywords

Serine Proteinase Neutrophil Elastase Pulmonary Emphysema Human Neutrophil Elastase Leukocyte Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Bretz and M. Baggiolini. Biochemical and Morphological Characterization of Azurophil and Specific Granules of Human Polymorphonuclear Leukocytes. J. Cell Biol. 63:251 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    C. Kuhn and R.M. Senior. The Role of Elastase in the Development of Emphysema. Lung 155:185 (1975).CrossRefGoogle Scholar
  3. 3.
    A. Janoff. Biochemical Links Between Cigarette Smoke and Pulmonary Emphysema. J. Appl. Physiol. 55:285 (1983).PubMedGoogle Scholar
  4. 4.
    A. Janoff and J. Blondin. Depletion of Cartilage Matrix by a Neutral Proteinase Fraction of Human Leucocyte Lysosomes. Proc. Soc. Exp. Biol. Med. 135:302 (1970).PubMedGoogle Scholar
  5. 5.
    J.Travis and G. Salvesen. Human Plasma Proteinase Inhibitors. Ann. Rev. Biochem. 52:655 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Beatty, J. Bieth, and J. Travis. Kinetics of Association of Serine Proteinases with Native and Oxidized Alpha-1-Proteinase Inhibitor and Alpha-l-Antichymotrypsin. J. Biol. Chem.. 255:3931 (1980).PubMedGoogle Scholar
  7. 7.
    C.E. Smith and D.A. Johnson. Human Bronchial Leukocyte Proteinase Inhibitor. Rapid Isolation and Kinetic Analysis with Human Leukocyte Proteinases. Biochem. J. 225:463 (1985).PubMedGoogle Scholar
  8. 8.
    U. Seemuller, M. Arnhold, H. Fritz, K. Wiedenmann, W. Machleidt, R. Heinzel, H. Appelhaus, H. Gunter Gassen, and F. Lottspeich. The Acid-Stable Proteinase Inhibitor of Human Mucous Secretions. FEBS Letters 199:43 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    J.C. Powers and D.L. Carroll. Reactions of Azyl Carbazates with Proteolytic Enzymes. Biochem. Biophys. Res. Commun.. 67:639 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Sinha, W. Watorek, S. Karr, J. Giles, W. Bode, and J. Travis. Primary Structure of Human Neutrophil Elastase. Proc. Natl. Acad. Sci. USA 84:2228 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Salvesen, D. Farley, J. Shuman, A. Przybyla, C. Reilly, and J. Travis. Molecular Cloning of Human Cathepsin G. Structural Similarity to Mast Cell and Cytotoxic Lymphocyte Proteinases. Biochemistry 26:2289 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Senior, E. Campbell, J. Landis, R. Cox, C. Kuh, and H. Koren. Elastase of U-937 Monocyte Like Cells. Comparison with Elastases Derived from Human Monocytes and Neutrophils and Murine Macrophage Like Cells. J. Clin. Invest.. 69:384 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Senior and E. Campbell. Cathepsin G in Human Mononuclear Phagocytes. Comparison Between Monocytes and U-937 Monocyte-Like Cells. J. Immunol.. 132:2547 (1984).PubMedGoogle Scholar
  14. 14.
    R. Baugh and J. Travis. Human Leukocyte Granule Elastase: Rapid Isolation and Characterization. Biochemistry 15: 836 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    W. Bode, A-Z. Wei, R. Huber, E. Meyer, J. Travis, and S. Neumann. X-Ray Crystal Structure of the Complex of Human Leukocyte Elastase (PMN-Elastase) and the Third Domain of the Turkey Ovomucoid Inhibitor. EMBO J. 5:2453 (1986).PubMedGoogle Scholar
  16. 16.
    A. Gerber, J. Carson, and B. Hadorn. Partial Purification arid Characterization of a Chymotrypsin-Like Enzyme from Human Neutrophil Leukocytes. Biochim. Biophys. Acta 364:103 (1974).PubMedGoogle Scholar
  17. 17.
    H. Neurath. Mechanism of Zymogen Activation. Fed. Proc. 23:1 (1964).PubMedGoogle Scholar
  18. 18.
    S. Eriksson. Pulmonary Emphysema and Alpha-l-Antitrypsin Deficiency. Acta Med. Scand. 175:197 (1964).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Johnson and J. Travis. The Oxidative Inactivation of Human Alpha-l-Proteinase Inhibitor. Further Evidence for Methionine at the Reactive Center. J. Biol. Chem. 254: 4022 (1979).PubMedGoogle Scholar
  20. 20.
    D. Johnson and J. Travis. Inactivation of Human Alpha-1-Proteina-se Inhibitor by Thiol Proteinases. Biochemical J. 163:639 (1977).Google Scholar
  21. 21.
    T. Tanaka, Y. Minematsu, C. Reilly, J. Travis, and J. Powers. Human Leukocyte Cathepsin G: Subsite Mapping with 4-Nitroanilides. Chemical Modification and Effect of Possible Cofactors. Biochemistry 24:2040-2047.Google Scholar
  22. 22.
    C.F. Reilly, D. Tewksbury, N. Schechter, and J. Travis. Rapid Conversion of Angiotensin I to Angiotensin II by Neutrophil and Mast Cell Proteinases. J. Biol. Chem. 257:8619 (1982).PubMedGoogle Scholar
  23. 23.
    C.F. Reilly, N. Schechter, and J. Travis. Inactivation of Bradykinin and Kallidin by Cathepsin G and Mast Cell Chymase. Biochem. Biophys. Res. Commun. 127:443 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wieslaw Watorek
    • 1
  • David Farley
    • 1
  • Guy Salvesen
    • 1
  • James Travis
    • 1
  1. 1.Department of BiochemistryUniversity of GeorgiaAthensUSA

Personalised recommendations