Skip to main content

Cathepsin B and D Activity in Human Skeletal Muscle in Disease States

  • Conference paper
Proteases II

Abstract

The effects of nutrition and disease state on whole body protein metabolism have been widely studied in recent years, but the distribution of changes among the various body tissues is less known. It is, therefore, important to establish the contribution made by skeletal muscle to whole body protein metabolism in disease state, because skeletal muscle is quantitatively and metabolically the most important body protein “store”1 and remains a good marker of protein-energy malnutrition (PEM) when the protein pools of other tissues and organs become metabolically una vailable 1-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. F. Guarnieri, G. Toigo, R. Situlin, M. A. Del Bianco, L. Crapesi, and A. Zanettovich, Direct biochemical analysis of human muscle tissue in hospital malnutrition, Proc. Int. Workshop on Nutritional Assessment in Hospital Malnutrition, Venice (Italy) April 26-27, 1985, JPEN 11 (1987) (in press)

    Google Scholar 

  2. S. B. Heymsfield, C. McManus, V. Stevens, and J. Smith, Muscle mass: reliable indicator of protein-energy malnutrition severity and outcome, Am. J. Clin. Nutr. 35:1192–1199 (1982)

    PubMed  CAS  Google Scholar 

  3. S. B. Heymsfield, V. Stevens, R. Noel, C. McManus, J. Smith, and D. Nixon, Biochemical composition of muscle in normal and semi starved human subjects: relevance to anthropometric measurement, Am. J. Clin. Nutr. 36:131–142 (1982)

    PubMed  CAS  Google Scholar 

  4. M. J. Rennie, Muscle protein turnover and the wasting due to injury and disease, Br. Med. Bull. 41:257–264 (1985)

    PubMed  CAS  Google Scholar 

  5. C. I. Harris, C. A. Maltin, R. M. Palmer, P. J. Reeds, and A. B. Wilson, Biochemical and morphological observations of skeletal muscles incubated in vitro, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  6. M. E. Tischler, Hormonal regulation of protein degradation in skeletal and cardiac muscle, Life Sci. 28:2569–2576 (1981)

    Article  PubMed  CAS  Google Scholar 

  7. P. J. Reeds, and W. P. T. James, Protein turnover, Lancet March 12: 571–574 (1983)

    Article  Google Scholar 

  8. M. J. Rennie, and R. Harrison, Effects of injury, disease, and malnutrition on protein metabolism in man, Lancet February 11:323–325 (1984)

    Article  Google Scholar 

  9. E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  10. W.H. Hörl, and A. Heidland, eds., “Proteases - Potential Role in Health and Disease,” Plenum Press, New York and London (1984)

    Google Scholar 

  11. K. Furuno, and A. L. Goldberg, The activation of protein degradation in muscle by calcium or muscle injury does not involve a lysosomal mechanism, Biochem. J. 237:859–864 (1986)

    PubMed  CAS  Google Scholar 

  12. J. F. Dice, J. M. Backer, P. Miao, L. Bourret, and M. A. McElligott, Regulation of catabolism of ribonuclease a microinjected into human fibroblasts, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  13. E. A. Khairallah, J. S. Bond, and J. W. C. Bird, “Regulation of protein turnover,” in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  14. G. Guarnieri, G. Toigo, R. Situlin, A. Del Bianco, L. Crapesi, A. Zanettovich, E. Romano, F. Iscra, and G. Mocavero, Muscle-biopsy studies on protein metabolism in traumatized patients, in: “Clinical Nutrition and Metabolic Research. Proc. 7th Congr. ESPEN, Munich 1985,” G. Dietze, T. Grunert, A. Kleinberger, and S. Wolfram, eds., Karger, Basel (1986)

    Google Scholar 

  15. A. Salminen, and V. Vinko, Effects of age and prolonged running on proteolytic capacity in mouse cardiac and skeletal muscle, Acta Physiol. Scand. 112:89–95 (1981)

    Article  PubMed  CAS  Google Scholar 

  16. K. Lundholm, and T. Scherstén, Leucine incorporation into proteins and cathepsin D activity in human skeletal muscles. The influence of the age of the subject, Exp. Geront. 10:155–159 (1975)

    Article  CAS  Google Scholar 

  17. L. D. Sellin, R. Libelius, I. Lundquist, S. Tagerud, and S. Thesleff, Membrane and biochemical alterations after denervation and during reinnervation of mouse skeletal muscle, Acta Physiol. Scand. 110: 181–186 (1980)

    Article  PubMed  CAS  Google Scholar 

  18. J. B. Li, Protein synthesis and degradation in skeletal muscle of normal and dystrophic hamsters, Am. J. Physiol. 239:E401–E406 (1980)

    Google Scholar 

  19. A. M. Samarel, E. A. Ogunro, A. G. Fercuson, P. Allenby, and M. Lesch, Regulation of cathepsin D metabolism in rabbit heart. Evidence for a role for precursor processing in the control of enzyme activity, J. Clin. Invest. 69:999–1007 (1982)

    Article  PubMed  CAS  Google Scholar 

  20. A. F. Clark, and P. J. Vignos Jr., The role of proteases in experimental glucocorticoid myopathy, Muscle Nerve 4:219–222 (1981)

    Article  PubMed  CAS  Google Scholar 

  21. B. G. Vernon, Fand P.J. Buttery, The effect of the growth promoter trenbolone acetate, dexamethasone and thyroxine on skeletal muscle cathepsin D (EC 3.4.4.23) activity, Proc. Nutr. Soc. 40:13A (1980)

    Google Scholar 

  22. R. S. Decker, and K. Wildenthal, Lysosomal alterations in heart, skeletal muscle, and liver of hyperthyroid rabbits. J. Lab. Invest. 44:455–465 (1981)

    CAS  Google Scholar 

  23. D. J. Millward, P. C. Bates, J. G. Brown, M. Cox, R. Giugliano, M. Jepson, and J. Pell, Role of thyroid, insulin and corticosteroid hormones in the physiological regulation of proteolysis in muscle, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  24. T. Schersten, and K. Lundholm, Lysosomal enzyme activity in muscle tissue from patients with malignant tumor, Cancer 30:1246–1251 (1972)

    Article  PubMed  CAS  Google Scholar 

  25. K. Lundholm, A.-C. Bylund, J. Holm, and T. Scherstén, Skeletal muscle metabolism in patients with malignant tumor, Europ. J. Cancer 12: 465–473 (1976)

    CAS  Google Scholar 

  26. R. Odessey, Burn-induced stimulation of lysosomal enzyme activity in skeletal muscle, Metabolism 35:750–757 (1986)

    Article  PubMed  CAS  Google Scholar 

  27. D. E. Rannels, R. Kao, and H. E. Morgan, Effect of insulin on protein turnover in heart muscle, J. Biol. Chem. 250:1694–1701 (1975)

    PubMed  CAS  Google Scholar 

  28. J. B. Li, S. R. Rannels, M. E. Burkart, and L. S. Jefferson, Effects of insulin on protein degradation and lysosomal cathepsin D in perfused skeletal muscle, Fed. Proc. 34:535 (1975)

    Google Scholar 

  29. P. A. Sinnett-Smith, N. W. Dumelow, and P. J. Buttery, Protein turnover in sheep treated with trenbolone acetate and zeranol, Proc. Nutr. Soc. 42:58A (1983)

    Google Scholar 

  30. D. J. Millward, P. C. Bates, J. G. Brown, S. R. Rosochacki, and M. J. Rennie, Protein degradation and the regulation of protein balance in muscle, in: “Protein Degradation in Health and Disease,” Ciba Symposium No. 75:307–329 (1980)

    Google Scholar 

  31. G. H. Clowes Jr., B. C. George, C. A. Villee Jr., and C. A. Saravis, Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma, N. Engl. J. Med. 308:545–552 (1983)

    Article  PubMed  Google Scholar 

  32. V. Baracos, H. P. Rodemann, C. A. Dinarello, and A. L. Goldberg, Stimulation of muscle protein degradation and prostaglandin release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N. Engl. J. Med. 308:553–558 (1983)

    Article  PubMed  CAS  Google Scholar 

  33. A. L. Goldberg, V. Baracos, P. Rodemann, L. Waxmann, and C. Dinarello, Control of protein degradation in muscle by prostaglandins, Ca2+, and leukocytic pyrogen (interleukin-1). Fed. Proc. 43:1301–1306 (1984)

    PubMed  CAS  Google Scholar 

  34. R. Ruff, and D. Secrist, Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat. J. Clin. Invest. 73:1483–1486 (1984)

    Article  PubMed  CAS  Google Scholar 

  35. A. S. Clark, R. A. Kelly, and W. E. Mitch, Systemic response to thermal injury in rats. Accelerated protein degradation and altered glucose utilization in muscle, J. Clin. Invest. 74:888–897 (1984)

    Article  PubMed  CAS  Google Scholar 

  36. A. M. Spanier, and J. W. C. Bird, Endogenous cathepsin B inhibitor activity in normal and myopathic red and white skeletal muscle, Muscle Nerve 5:313–320 (1982)

    Article  PubMed  CAS  Google Scholar 

  37. J. D. Etlinger, H. McMullen, R. F. Rieder, A. Ibrahim, R. A. Janeczko, and S. Marmorstein, Mechanisms and control of ATP-dependent proteolysis, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  38. G. N. DeMartino, and D. E. Croall, Calcium-dependent proteases from liver and heart, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  39. D. E. Goll, T. Edmunds, W. C. Kleese, S. K. Sathe, and J. D. Shannon, Some properties of the Ca2+-dependent proteinase, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  40. J. Kay, R. Heath, B. Dahlmann, L. Kuehn, and W. T. Stauber, Serine proteinases and protein breakdown in muscle, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  41. B. Dahlmann, L. Kuehn, M. Rutschmann, and H. Reinauer, High molecular mass cysteine proteinases from rat skeletal muscle tissue, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  42. M. Mayer, Regulation of myofibrillar protease, plasminogen activator and protein degradation in cultured myoblasts, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  43. O. Z. Lernau, S. Nissan, B. Neufeld, and M. Mayer, Myofibrillar protease activity in muscle tissue from patient in catabolic conditions, Eur. J. Clin. Invest. 10:357–361 (1980)

    Article  PubMed  CAS  Google Scholar 

  44. N. C. Kar, and C. M. Pearson, A calcium-activated neutral protease in normal dystrophic human muscle. Clin. Chim. Acta 73:293 (1976)

    Article  PubMed  CAS  Google Scholar 

  45. A. Jakubiec-Puka, and W. Drabikowski, Changes in proteolytic activity in muscle of rat after immobilization, in: “Structure and Function of Normal and Diseased Muscle and Peripheral Nerve,” I. Hausmanowa-Petrusewicz, and H. Jedrzejowska, eds., Polish Medical Publ., Warsaw (1974)

    Google Scholar 

  46. A. Jakubiec-Puka, and W. Drabikowski, Influence of denervation and reinnervation on autolytic activity and on protein composition of skeletal muscle in rat, Enzyme 23:10 (1978)

    PubMed  CAS  Google Scholar 

  47. J. J. Newman, D. R. Strome, C. W. Goodwin, A. D. Mason Jr., and B. A. Pruitt, Neutral proteinase activity in skeletal muscle from thermally injured rats, J. Surg. Res. 35:515–519 (1983)

    Article  PubMed  CAS  Google Scholar 

  48. R. Odessey, Effect of inhibitors of proteolysis and arachidonic acid metabolism on burn-induced protein breakdown, Metabolism 34:616–620 (1985)

    Article  PubMed  CAS  Google Scholar 

  49. D. J. Loegering, and J. Turinsky, Prostaglandin E2 production and protein metabolism in septic rats, Fed. Proc. 44:1377 (1985)

    Google Scholar 

  50. P.-0. Hasselgren, M. Talamini, R. LaFrance, J. H. James, H. C. Peters, and J. E. Fischer, Effect of indomethacin on proteolysis in septic muscle, Ann. Surg. 202:557–562 (1985)

    Article  PubMed  CAS  Google Scholar 

  51. H. R. Freund, J. H. James, R. LaFrance, L. S. Gallon, U. 0. Barcelli, L. L. Edwards, S. N. Joffe, S. Bjornson, and J. E. Fischer, The effect of indomethacin on muscle and liver protein synthesis and on whole-body protein degradation during abdominal sepsis in the rat, Arch. Surg. 121:1154–1158 (1986)

    Article  PubMed  CAS  Google Scholar 

  52. A. M. Spanier, W. A. Clark Jr., and R. Zak, Replacement perfusion of cultured eucaryotic cells: a method for the accurate measurement of the rates of growth, protein synthesis and protein turnover, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  53. U. Pfeifer, and R. Dunker, Inhibition of protein degradation and of cellular autophagy in growing as compared to density inhibited fibroblasts, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  54. V. Turk, J. Brzin, B. Lenarčič, P. Ločnikar, T. Popović, A. Ritonja, J. Babnik, W. Bode, and W. Machleidt, Structure and function of lysosomal cysteine proteinases and their protein inhibitors, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  55. D. J. Millward, J. G. Brown, and B. Odedra, Protein turnover in individual tissues with special emphasis on muscle, in: “Nitrogen metabolism in man,” P. Waterlow, and J. Stephen, eds., Applied Science Publ., London (1981)

    Google Scholar 

  56. G. F. Guarnieri, G. Toigo, R. Situlin, L. Crapesi, and M. A. Del Bianco, Proteinase activity, as well as DNA, RNA and protein content in human skeletal muscle in malnutrition and disease states, in: “Proc. of the Workshop: Wertigkeit und Aussagefähigkeit metabolischer Parameter in der parenteralen Ernährung, Fuschl, March 6-7, 1987,” W. Zuckschwerdt, ed., Verlag, München (1987) (in press)

    Google Scholar 

  57. G. Guarnieri, G. Toigo, R. Situlin, L. Faccini, U. Coli, S. Landini, G. Bazzato, F. Dardi, and L. Campanacci, Muscle biopsy studies in chronically uremic patients: evidence for malnutrition, Kidney Int. 24:S-187-S-l93 (1983)

    Google Scholar 

  58. G. F. Guarnieri, G. Toigo, R. Situlin, L. Faccini, R. Rustia, and F. Dardi, Muscle cathepsin D activity, and RNA, DNA and protein content in maintenance hemodialysis patients, in: “Proteases: Potential Role in health and Disease,” W. W.H. Hörl, and A. Heidland, eds., Plenum Publ. Corp. (1984)

    Google Scholar 

  59. A. Baici, M. Gyger-Marazzi, and P. Strüuli, Extracellular cysteine proteinase and collagenase activities as a consequence of tumor-host interaction in the rabbit V2 carcinoma, Invasion Metastasis 4:13–27 (1987)

    Google Scholar 

  60. A. Heidland, W. H. Hörl, N. Heller, H. Heine, S. Neumann, and E. Heidbreder, Proteolytic enzymes and catabolism: enhanced release of granulocyte proteinases in uremic intoxication and during hemodialysis, Kidney Int. 24:S-27-S-36 (1983)

    Article  Google Scholar 

  61. G. Guarnieri, G. Toigo, R. Situlin, L. Crapesi, M. A. Del Bianco, A. Zanettovich, L. Faccini, A. Lucchesi, L. Oldrizzi, C. Rugiu, and G. Maschio, Nutritional assessment in patients with early renal insufficiency on long-term low protein diet, in: “Contr. to Nephrol., vol. 53”, G.M. Berlyne, and S. Giovannetti, eds., Karger, Basel (1986)

    Google Scholar 

  62. G. Guarnieri, G. Toigo, R. Situlin, L. Crapesi, M. A. Del Bianco, A. Zanettovich, E. Mandero, and G. Resetta, Muscle biopsy studies on protein-energy malnutrition in patietns with chronic relapsing pancreatitis, Infusionsther. 13:166–171 (1986)

    CAS  Google Scholar 

  63. J. F. Dice, and C. D. Walker, The general characteristics of intracellular protein degradation in diabetes and starvation, in: “Protein Turnover and Lysosome Function,” H.L. Segal, and D.J. Doyle, eds., Academic Press, New York San Francisco London (1978)

    Google Scholar 

  64. B. Draznin, and M. Trowbridge, Inhibition of intracellular proteolysis by insulin in isolated rat hepatocytes, J. Biol. Chem. 257:11988–11993 (1982)

    PubMed  CAS  Google Scholar 

  65. V. M. Pain, E. C. Albertse, and P. J. Garlick, Protein metabolism in skeletal muscle, diaphragm, and heart of diabetic rats, Am. J. Physiol. 245:604–610 (1983)

    Google Scholar 

  66. D. J. Millward, P. C. Bates, J. G. Brown, M. Cox, R. Giugliano, M. Jepson, and J. Pell, Role of thyroid, insulin and corticosteroid hormones in the physiological regulation of proteolysis in muscle, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  67. P. J. Garlick, V. R. Preedy, and P.J. Reeds, Regulation of protein turnover in vivo by insulin and amino acids, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  68. R. I. Inculet, R. J. Finley, J. H. Duff, R. Pace, C. Rose, A. C. Groves, and L. I. Woolf, Insulin decreaes muscle protein loss after operative trauma in man, Surgery 99:752–758 (1986)

    PubMed  CAS  Google Scholar 

  69. J. M. Fagan, S. Satarug, P. Cook, and M. E. Tischler, Rat muscle protein turnover and redox state in progressive diabetes, Life Sci. 23: 783–790 (1987)

    Article  Google Scholar 

  70. M. Goodman, Myofibrillar protein breakdown in skeletal muscle is diminished in rats with chronic streptozocin-induced diabetes, Diabetes, 36:100–105 (1987)

    Article  PubMed  CAS  Google Scholar 

  71. D. D. Trunkey, Overview Of trauma, Surg. Clins. N. 62:3–7 (1982)

    CAS  Google Scholar 

  72. B. Chua, R. L. Kao, D. E. Rannels, and H.E. Morgan, Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J. Biol. Chem. 254:6617–6623 (1979)

    PubMed  CAS  Google Scholar 

  73. V. E. Baracos, and A. L. Goldberg, Ca2+, interleukin-1 and failure to maintain normal length stimulate protein degradation in isolated skeletal muscle, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  74. R. J. Smith, Regulation of protein degradation in differentiated skeletal muscle cells in monolayer culture, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

  75. J. C. Waterlow, P. J. Garlick, and D. J. Millward, Protein turnover in mammalian tissues and in the whole body, Elsevier/North-Holland Biomedical Press, Amsterdam (1978)

    Google Scholar 

  76. P.-0. Hasselgren, R. Jagenburg, L. Karlström, P. Pedersen, and T. Seeman, Changes of protein metabolism in liver and skeletal muscle following trauma complicated by sepsis, J. Trauma 24:224–228 (1984)

    Article  PubMed  CAS  Google Scholar 

  77. F. J. Ballard, and L. C. Read, Coordinate regulation of protein synthesis and breakdown in cultured cells, in: “Progress in Clinical and Biological Research, vol. 180: Intracellular Protein Catabolism,” E.A. Khairallah, J.S. Bond, J.W.C. Bird, eds., Alan R. Liss, Inc., New York (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Guarnieri, G., Toigo, G., Situlin, R., Del Bianco, M.A., Crapesi, L. (1988). Cathepsin B and D Activity in Human Skeletal Muscle in Disease States. In: Hörl, W.H., Heidland, A. (eds) Proteases II. Advances in Experimental Medicine and Biology, vol 240. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1057-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1057-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8313-3

  • Online ISBN: 978-1-4613-1057-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics