Proteases II pp 199-205 | Cite as

Astrocytes Synthesize and Secrete α2-Macroglobulin: Differences Between the Regulation of α2-Macroglobulin Synthesis in Rat Liver and Brain

  • Joachim Bauer
  • Peter-Joachim Gebicke-Haerter
  • Ursula Ganter
  • Isolde Richter
  • Wolfgang Gerok
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 240)


α2-Macroglobulin (α2M) is an important proteinase inhibitor both in the blood and in the interstitial space of many mammalian species. Recently, occurrence of α2M in human and fetal rat brain has been reported. However, its cellular origin remained obscure. Here it will be shown that astroglial cells cultured from newborn rats synthesize and secrete α2M. In addition to astrocyte primary cultures a rat astrocytoma cell line, C6-cells, also synthesize and secrete α2M. In contrast to hepatocytes of the adult rat, where α2M is expressed as an acute-phase protein and where glucocorticoids and monocyte-derived factors are required for its synthesis, α2M synthesis in astrocytes of newborn rats is independent from both. It is therefore concluded that expression of α2M is differently regulated in the liver of the adult rat and fetal or neonatal brain.


Glial Fibrillary Acidic Protein Cell Homogenate Astroglial Cell Astrocyte Culture Astrocyte Primary Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Saksela. Plasminogen activation and regulation of pericellular proteolysis, Biochim. Biophys. Acta 823:35 (1985).PubMedGoogle Scholar
  2. 2.
    K. M. Dziegielewska, N.R. Saunders, and H. Soreq. mRNA from developing rat cerebellum directs in vitro synthesis of plasma proteins, Dev. Brain Res. 23:259 (1985).CrossRefGoogle Scholar
  3. 3.
    V. Kodelja, M. Heisig, W. Northemann, P.C. Heinrich, and W. Zimmermann. α2-Macroglobulin gene expression during rat development studied by in situ hybridization, EMBO J. 5:3151 (1986).PubMedGoogle Scholar
  4. 4.
    D. E. Panrucker, P.C.W. Lai, and F.L. Lorscheider. Distribution of acute-phase α2-macroglobulin in rat fetomaternal compartments, Am. J. Physiol. 245:138 (1983).Google Scholar
  5. 5.
    H. E. Weimer, and D.C. Benjamin. Immunochemical detection of an acute phase protein in rat serum, Am. J. Physiol. 209:736 (1965).PubMedGoogle Scholar
  6. 6.
    A. H. Gordon. The α2-macroglobulins in rat serum, Biochem. J. 159:643 (1976).PubMedGoogle Scholar
  7. 7.
    J. Bauer, M. Birmelin, G.-H. Northoff, W. Northemann, T.-A. Tran-Thi, H. Ueberberg, K. Decker, and P.C. Heinrich. Induction of rat α2-macroglobulin in vivo and in hepatocyte primary cultures: synergistic action of glucocorticoids and a Kupffercell-derived factor, FEBS Lett. 177:89 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Bauer, W. Weber, T.-A. Tran-Thi, G.-H. Northoff, K. Decker, W. Gerok, and P.C. Heinrich. Murine interleukin 1 stimulates α2-macroglobulin synthesis in rat hepatocyte primary cultures, FEBS Lett. 190:271 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Bauer, T.-A. Tran-Thi, G.-H. Northoff, F. Hirsch, H.-J. Schlayer, W. Gerok, and P.C. Heinrich. The acute-phase induction of α2-macroglobulin in rat hepatocyte primary cultures, Eur. J. Cell Biol. 40:86 (1986).PubMedGoogle Scholar
  10. 10.
    J. Booher, and M. Sensenbrenner. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures, Neurobiology 2:91 (1972).Google Scholar
  11. 11.
    M. Keller, R. Jakisch, A. Seregi, and G. Hertting. Comparison of prostanoid forming capacity of neuronal and astroglial cells in primary cultures, Neurochem. Int. 7:655 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    W. Northemann, T. Andus, V. Gross, and P.C. Heinrich. Cell-free synthesis of rat α2-macroglobulin and induction of its mRNA during experimental inflammation, Eur. J. Biochem. 137:257 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    L. F. Eng. The glial fibrillary acidic (GF5) protein, in: “Proteins of the Nervous System”, R.A. Bradshaw, and D.M. Schneider, eds., Raven Press, New York (1980).Google Scholar
  14. 14.
    L. F. Eng, and S.J. De Armond. Glial fibrillary acidic (GFA) protein immunocytochemistry in development and neuropathology, in: “Xlth International Congress of Anatomical-Glial and Neuronal Cell Biology”, E.A. Vidrio, and S. Fedoroff, eds., Alan R. Liss, New York (1981).Google Scholar
  15. 15.
    C. D. Dijkstra, E.A. Doepp, P. Joling, and G. Kraal. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED 1, ED 2, and ED 3, Immunology 54:589 (1985).PubMedGoogle Scholar
  16. 16.
    P. J. Gebicke-Haerter, H.-H. Althaus, I. Rittner, and V. Neuhoff. Bulk separation and long-term culture of oligodendrocytes from adult pig brain. I. Morphological studies, J. Neurochem. 42:357 (1984).CrossRefGoogle Scholar
  17. 17.
    J. King, and K. Laemmli. Polypeptides of the tailfibres of bacteriophage T4, J. Mol. Biol. 62:465 (1971 ).PubMedCrossRefGoogle Scholar
  18. 18.
    W. M. Bonner, and R.A. Laskey. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gel, Eur. J. Biochem. 46:83 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Krystosek, and N.W. Seeds. Plasminogen activator secretion by granule neurons in cultures of developing cerebellum, Proc. Natl. Acad. Sci. USA 78:7810 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Guenther, H.P. Nick, and D. Monard. A glia-derived neuritepromoting factor with protease inhibitory activity, EMBO J. 4:1963 (1985).PubMedGoogle Scholar
  21. 21.
    P. H. Patterson. On the role of proteases, their inhibitors and the extracel1ular matrix in promoting neurite outgrowth, J. Physiol. (Paris) 80:207 (1985).Google Scholar
  22. 22.
    G. Moonen, M.P. Grau-Wagemans, and I. Selak. Plasminogen activator-plasmin system and neuronal migrations, Nature 298:752 (1982).CrossRefGoogle Scholar
  23. 23.
    J. Lindner, J. Guenther, H.-P. Nick, G. Zinser, H. Antonicek, M. Schachner, and D. Monard. Modulation of granule cell migration by a glia-derived protein, Proc. Natl. Acad. Sci. USA 83:4568 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Joachim Bauer
    • 1
  • Peter-Joachim Gebicke-Haerter
    • 2
  • Ursula Ganter
    • 1
  • Isolde Richter
    • 1
  • Wolfgang Gerok
    • 1
  1. 1.Medizinische KlinikInstitut der UniversitätFreiburgWest Germany
  2. 2.PharmakologischesInstitut der UniversitätFreiburgWest Germany

Personalised recommendations