Skip to main content

Negative Ion Resonance Electron Scattering from Oriented, Physisorbed O2

  • Chapter
Electron-Molecule Scattering and Photoionization

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 144 Accesses

Abstract

The physisorption of diatomic molecules on a crystalline solid surface at low temperature provides a means of orientating the molecular axis and thus studying low energy electron scattering from an oriented molecule. The cross-section for vibrational excitation of one monolayer of O2 on graphite at 25K has a peak near 9eV electron energy. The angular distribution of vibrationally inelastic electrons has been measured; comparison with calculated distributions, which include interference effects arising from multiple elastic electron scattering within the molecular layer, allows us to determine the orientation of the O2 molecule on the surface and to identify the partial wave content of the resonance. The dominant partial wave (pπ) is consistent with the 2Πu compound state but not the 4Σu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. George J. Schulz, Rev. Mod. Phys. 4:423 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  2. J. E. Demuth, D. Schmeisser and Ph. Avouris, Phys. Rev. Lett. 1:1166 (1981).

    Article  ADS  Google Scholar 

  3. L. Sanche and M. Michaud, Phys. Rev. Lett. 1:1008 (1981).

    Article  ADS  Google Scholar 

  4. D. Schmeisser, J. E. Demuth and Ph. Avouris, Phys. Rev. B22:4857 (1982).

    ADS  Google Scholar 

  5. L. Sanche and M. Michaud, Phys. Rev. B27:3856 (1983).

    ADS  Google Scholar 

  6. J. E. Demuth, Ph. Avouris and D. Schmeisser, J. Electron Spec. 22:163 (1983).

    Article  Google Scholar 

  7. L. Sanche and M. Michaud, Phys. Rev. B30:6078 (1984).

    Google Scholar 

  8. R. E. Palmer, J. F. Annett and R. F. Willis, J. Electron Spec. 38:317 (1986)

    Article  Google Scholar 

  9. R. E. Palmer, PhD Thesis, University of Cambridge, 1986.

    Google Scholar 

  10. A. Gerber and A. Herzenberg, Phys. Rev.B1:6219 (1985).

    ADS  Google Scholar 

  11. J. W. Gadzuk, J. Chem. Phys. 11:3982 (1983).

    Article  ADS  Google Scholar 

  12. M. Krauss, D. Neumann, A. C. Wahl, G. Das and W. Zemke, Phys. Rev. A7:69 (1973)

    ADS  Google Scholar 

  13. G. Das, A. C. Wahl, W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 68:4252 (1978).

    Article  ADS  Google Scholar 

  14. G. H. Dunn, Phys. Rev. Lett.8:62 (1962).

    Article  ADS  Google Scholar 

  15. L. Sanche, Phys. Rev. Lett.51:1638 (1984)

    Google Scholar 

  16. R. Azria, L. Parenteau and L. Sanche, Phys. Rev. Lett. 52:638 (1987).

    Article  ADS  Google Scholar 

  17. S. F. Wong, M. J. W. Boness and G. J. Schulz, Phys. Rev. Lett. 31:969 (1973).

    Article  ADS  Google Scholar 

  18. Michael F. Toney and Samuel C. Fain, Jr., Phys. Rev. B36:1248 (1987).

    Google Scholar 

  19. R. E. Palmer, P. J. Rous, J. L. Wilkes and R. F. Willis, Phys. Rev. Lett. to be published in Jan. or Feb. 1988.

    Google Scholar 

  20. R. F. W. Bader, W. H. Henneker and P. E. Cade, J. Chem. Phys. 4:3341 (1967).

    Article  ADS  Google Scholar 

  21. Michael F. Toney and Samuel C. Fain, Jr., Phys. Rev. B30:1115 (1984).

    ADS  Google Scholar 

  22. P. A. Heiney, P. W. Stephens, S. G. J. Mochrie, J. Akimitsu, R. J. Birgeneau and P. M. Horn, Surface Sci. 125:539 (1983).

    Article  ADS  Google Scholar 

  23. R. E. Palmer, P V Head and R. F. Willis, Rev. Sci. Instrum. 58:1118 (1987).

    Article  ADS  Google Scholar 

  24. M. S. Dresselhaus and G. Dresselhaus, Advanced in Phys. 30:139 (1981).

    Article  ADS  Google Scholar 

  25. R. E. Palmer, J. L. Wilkes and R. F. Willis, J. Electron Spec. 44:229 (1987).

    Article  Google Scholar 

  26. J. W. Davenport, W. Ho and J. R. Schrieffer, Phys. Rev. B2.:3115 (1978).

    ADS  Google Scholar 

  27. Because the O2 layer is incommensurate with the graphite surface, we are not able to calculate multiple scattering in the substrate. However, the effective reflectivity of graphite (seen by the overlayer) that we calculate at 8.5eV is less than 1%, so this is not an important omission.

    Google Scholar 

  28. J. B. Pendry, “Low Energy Electron Diffraction”, Academic Press, London, 1974.

    Google Scholar 

  29. D. Dill and J. L. Dehmer, J. Chem. Phys. 61:692 (1974).

    Article  ADS  Google Scholar 

  30. P. J. Rous, R. E. Palmer and R. F. Willis, submitted to Phys. Rev. B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Palmer, R.E., Rous, P.J., Willis, R.F. (1988). Negative Ion Resonance Electron Scattering from Oriented, Physisorbed O2 . In: Burke, P.G., West, J.B. (eds) Electron-Molecule Scattering and Photoionization. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1049-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1049-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8309-6

  • Online ISBN: 978-1-4613-1049-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics