Advertisement

Photoionization Dynamics of Excited Molecular States

  • J. L. Dehmer
  • M. A. O’Halloran
  • F. S. Tomkins
  • P. M. Dehmer
  • S. T. Pratt
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3+1) ionization of H2 via the C 1Πu state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H2, excited in a (2+1) REMPI process via the E,F 1Σ g + will also be briefly discussed.

Keywords

Photoelectron Spectrum Vibrational Level Rydberg State Multiphoton Ionization Vibrational Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achiba, Y. and Kimura, K., 1984, Absorption and ionization of super-excited Rydberg states studied by two-color laser multiphoton ionization technique combined with photoelectron spectroscopy. In Book of Abstracts, International Conference on Multiphoton Processes III, Crete, P13.Google Scholar
  2. Berry, R. S., 1966, Ionization of molecules at low energies. J. Chem. Phys. 45, 1228.CrossRefADSGoogle Scholar
  3. Bonnie, H.J.M., Eenschuistra, P. J., Los, J., and Hopman, H. J., 1986, Influence of the vibrational quantum number of the resonant state in multiphoton ionization/dissociation of hydrogen molecules. Chem. Phys. Lett. 125, 27.CrossRefADSGoogle Scholar
  4. Bonnie, H.J.M., Verschuur, J.W.J., Hopman, H. J., and van Linden van den Heuvell, H. B., 1986, Photoelectron spectroscopy on resonantly enhanced multiphoton dissociative ionization of hydrogen molecules. Chem. Phys. Lett. 130, 43.CrossRefADSGoogle Scholar
  5. Bonnie, H.J.M., Verschuur, J.W.J., Hopman, H. J., and van Linden van den Heuvell, H. B., 1986, Photoelectron spectroscopy on resonantly enhanced multiphoton dissociative ionization of hydrogen molecules. Chem. Phys. Lett. 130, 43.CrossRefADSGoogle Scholar
  6. Cornaggia, C., Giusti-Suzor, A., and Jungen, Ch., 1987, Photoionization of the E,F excited state of H2: Calculation of the vibrational and angular distributions of the photoelectrons. To be published.Google Scholar
  7. Dill, D., 1972, Angular distributions of photoelectrons from H2: Effects of rotational autoionization. Phys. Rev. A6, 160.Google Scholar
  8. Dill, D., 1976, A primer on photoelectron angular distributions. In Photoionization and Other Probes of Many Electron Interactions, ed. F. Wuilleumier, pp. 387. New York, New York: Plenum.Google Scholar
  9. Dixit, S. N., Lynch, D. L., and McKoy, V., 1984, Three-photon resonant four-photon ionization of H2 via the C IIu state. Phys. Rev. A 30, 3332.CrossRefADSGoogle Scholar
  10. Dixit, S. N., and McKoy, V., 1986, Ionic rotational selection rules for (n+1) resonant enhanced multiphoton ionization. Chem. Phys. Lett. 128, 49.CrossRefADSGoogle Scholar
  11. Fano, U. and Dill, D., 1972, Angular momentum transfer theory of angular distributions. Phys. Rev. A 6, 185.CrossRefADSGoogle Scholar
  12. Guberman, S. L., 1983, The doubly excited autoionizing states of H2. J. Chem. Phys. 78, 1404.CrossRefADSGoogle Scholar
  13. Hickman, A. P., 1987a, Photoionization and photodissociation of H2 through autoionizing states. Bull. Am. Phys. Soc. 32, 1252.Google Scholar
  14. Hickman, A. P., 1987b, Non-Franck-Cgndon distribution of final states in photoionization of H2 (C Hu). Submitted for publication.Google Scholar
  15. Huber, K. P., and Herzberg, G., 1979, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. New York, New York: Van Nostrand Reinhold.Google Scholar
  16. Kruit, P., and Read, F. H., 1983, Magnetic field paralleliser for 2n electron-spectrometer and electron-image intensifier. J. Phys. E 16, 313.CrossRefADSGoogle Scholar
  17. Kimman, J., Verschuur, J.W.J., Lavollee, M., van Linden van den Heuvel, H. B., and van der Wiel, M. J., 1986, Branching ratios for autoionization of v = 3 Rydberg states in nitric oxide. J. Phys. B 19, 3909.CrossRefADSGoogle Scholar
  18. Namioka, T., 1964a, Absorption spectra of H2 in the vacuum-ultraviolet region. I. The Lyman and the Werner bands. J. Chem. Phys. 40, 3154.CrossRefADSGoogle Scholar
  19. Namioka, T., 1964b, Absorption spectra of H2 in the vacuum ultraviolet region. II. The B’ - X, B“ - X, D - X, and D’ - X bands. J. Chem. Phys. 41, 2141.CrossRefADSGoogle Scholar
  20. Namioka, T., 1964b, Absorption spectra of H2 in the vacuum ultraviolet region. II. The B’ - X, B“ - X, D - X, and D’ - X bands. J. Chem. Phys. 41, 2141.CrossRefADSGoogle Scholar
  21. Pratt, S. T., Dehmer, P. M., and Dehmer, J. L., 1984, Photoionization of excited molecular states. H2 C IIu. Chem. Phys. Lett. 105, 28.CrossRefADSGoogle Scholar
  22. Pratt, S. T., Dehmer, P. M., and Dehmer, J. L., 1986, Photoionization dynamics of excited molecular states. Photoelectron angular distributions and rotational and vibrational branching ratios for H2 C IIu, v’ = 0–4. J. Chem. Phys. 85, 3379.CrossRefADSGoogle Scholar
  23. Pratt, S. T., Dehmer, P. M., and Dehmer, J. L., 1987a, Photoelectron studies of çesonantly enhanced multiphoton ionization of H2 via the B’ Eú and D IIu. states. J. Chem. Phys. 86, 1727.CrossRefADSGoogle Scholar
  24. Pratt, S. T., Dehmer, P. M., and Dehmer, J. L., 1987b, Photoionization dynamics of excited molecular states. D2 C ‘Re. Submitted to J. Chem. Phys.Google Scholar
  25. Raoult, M. and Jungen, Ch., 1981, Calculation of vibrational preionization of H2 by multichannel quantum defect theory: Total and partial cross sections and photoelectron angular distributions. J. Chem. Phys. 74, 3388.CrossRefADSGoogle Scholar
  26. Xu, E., Tsuboi, T., Kachru, R., and Helm, H., 1987, Four-photon ionization and dissociation of H2. Post-deadline paper, 18th Annual Meeting of the APS Division of Atomic, Molecular, and Optical Physics, Cambridge, MA.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. L. Dehmer
    • 1
  • M. A. O’Halloran
    • 1
  • F. S. Tomkins
    • 1
  • P. M. Dehmer
    • 1
  • S. T. Pratt
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations