Infrared Excitations in Electronic Systems with Reduced Dimensionality

  • Jörg P. Kotthaus
Part of the NATO ASI Series book series (NATO ASI, volume 179)


Modern semiconductor devices are increasingly based on structure in which the electronically active channel is an electron or hole system with reduced dimensionality. The classical example is the metal-oxide-semiconductor-field-effect-transistor (MOSFET) in which electrons can be confined at the semiconductor-oxide interface to form a quasi-two-dimensional electron system (2DES). Another more recently developed device is the high-electron-mobility transistor (HEMT) in which a suitable doping profile induces a 2D electron channel at the heterojunction potential barrier. The extraordinary electronic properties of such two-dimensional electron systems at interfaces are summarized in part in an extended review by Ando, Fowler and Stern1. Fig. 1 schematically pictures the band diagram in the confinement direction perpendicular to the interface for both devices. In the MOS-system (Fig. 1a) a positive gate voltage Vg is applied between the p-type semiconductor and the metal gate and causes bending of the conduction and valence bands near the semiconductor-oxide interface. The electrons are confined in a narrow potential well bounded by the oxide barrier and the conduction band edge. In the modulation doped heterojunction (Fig. 1b) n-type doping of the large gap semiconductor (e.g. AlxGa1-x As) causes electron transfer to the undoped p-type lower gap semiconductor (e.g. GaAs) with a larger electron affinity.


Cyclotron Resonance Landau Level Inversion Layer Lower Landau Level Gate Voltage Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54:437 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    J. F. Koch, Spectroscopy of surface space charge layers, Surf. Sci. 58:104 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    D. C. Tsui, S. J. Allen, Jr., R. A. Logan, A. Kamgar and S. N. Coppersmith, High frequency conductivity in silicon inversion layers: Drude relaxation, 2D plasmons and minigaps in a surface superlattice, Surf. Sci. 73:419 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Kotthaus, High-frequency magnetoconductivity in space charge layers on semiconductors, Surf. Sci. 73:472 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    A. B. Fowler, G. L. Timp, J. J. Wainer and R. A. Webb, Observation of resonant tunneling in silicon inversion layers, Phys. Rev. Lett. 57:138 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, T. M. Tennant and A. D. Stone, Universal conductance fluctuations in silicon inversion-layer nanostructures, Phys. Rev. Lett. 56:2865 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    S. B. Kaplan and A. Hartstein, Universal conductance fluctuations in narrow Si accumulation layers, Phys. Rev. Lett. 56:2403 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    A. C. Warren, D. A. Antoniadis and H. I. Smith, Quasi one-dimensional conduction in multiple, parallel inversion lines, Phys. Rev. Lett. 56:1858 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    K. F. Berggren, T. J. Thornton, D. J. Newson and M. Pepper, Magnetic depopulation of 1D subbands in a narrow 2D electron gas in a GaAs:A1GaAs heterojunction, Phys. Rev. Lett. 57:1769 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, C. Sikorski and K. Ploog, Intersubband resonance in quasi one-dimensional inversion channels, Phys. Rev. Lett. 58:2586 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Kotthaus, Infrared spectroscopy of lower dimensional electron systems, Physica Scripta, in press.Google Scholar
  12. 12.
    E. Batke and D. Heitmann, Rapid-Scan Fourier transform spectroscopy of 2D space charge layers in semiconductors, Infrared Phys. 24:189 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    G. Abstreiter, J. P. Kotthaus, J. F. Koch and G. Dorda, Cyclotron resonance of electrons in surface space charge layers on Si, Phys. Rev. B14:2480 (1976)..ADSCrossRefGoogle Scholar
  14. 14.
    A.D. Wieck, Ph. D. thesis, University of Hamburg 1987, unpublished.Google Scholar
  15. 15.
    D. Heitmann, M. Ziesmann and L.L. Chang, Cyclotron-resonance oscillations in InAs quantum wells, Phys. Rev. B34:7463 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    F. Thiele, U. Merkt, J. P. Kotthaus, G. Lommer, L. Malcher, U. Rössler and G. Weimann, Cyclotron resonance masses in n-GaAs/Ga1-xA1x As heterojunctions, Solid State Commun. 62:841 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    M. Horst, U. Merkt, W. Zawadzki, J. G. Haan and K. Ploog, Resonant polarons in a GaAs-GaAlAs heterostructure, Solid State Commun. 53:403 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    M. A. Brummell, R. J. Nicholas, M. A. Hopkins, J. J. Harris and C. T. Foxon, Modification of the electran-phonon interactions in GaAs-GaAlAs heterojunctions, Phys. Rev. Lett. 58:77 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    Z. Schlesinger, W. I. Wang and A. H. MacDonald, Dynamical conductivity of the GaAs two-dimensional electron gas at low temperature and carrier density, Phys. Rev. Lett. 58:73 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    A. D. Wieck, E. Batke, D.Heitmann and J. P. Kotthaus, Parallel excitation of hole and electron intersubband resonances in space charge layers on silicon, Phys. Rev. B30:4553 (1984).ADSGoogle Scholar
  21. 21.
    D. Heitmann and U. Mackens, Grating coupler induced intersubband resonances in electron inversion layers of silicon, Phys. Rev. B33:8269 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    Z. Schlesinger, J. C. M. Hwang and S. J. Allen, Jr., Subband-Landau level coupling in a two-dimensional electron gas, Phys. Rev. Lett. 50:2098 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    A. D. Wieck, J. C. Maan, U. Merkt, J. P. Kotthaus, K. Ploog and G. Weimann, Intersubband energies in GaAs-Ga1-xAlxAs heterojunctions, Phys. Rev. B35:4145 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    U. Merkt, Spectroscopy of inversion electrons on III–V semiconductors, in: “Festkörperprobleme: Advances in Solid State Physics”, Vol. 27, P. Grosse, ed., Vieweg, Braunschweig (1987).Google Scholar
  25. 25.
    F. Stern and S. Das Sarma, Electron energy levels in GaAs-Ga1-xAlxAs heterojunctions, Phys. Rev. B30:840 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    E. Batke, D. Heitmann, J. P. Kotthaus and K. Ploog, Nonlocality in the two-dimensional plasmon dispersion, Phys. Rev. Lett. 54:2367 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    E. Batke, D. Heitmann and C. W. Tu, Plasmon and magnetoplasmon excitation in two-dimensional electron space-charge layer on GaAs, Phys. Rev. B34:6951 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Chaplik and D. Heitmann, Geometric resonances of two-dimensional magnetoplasmons, J. Phys. C18:3357 (1985).ADSGoogle Scholar
  29. 29.
    U. Mackens, D. Heitmann, K. Prager, J. P. Kotthaus and W.Beinvogl, Minigaps in the plasmon dispersion of a two-dimensional electron gas with spatially modulated charge density, Phys. Rev. Lett. 53:1485 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    Batke, W. Hansen, D. Heitmann, J. P. Kotthaus, U. Mackens, L. Prager and K. Ploog, Lateral structures of submicron periodicity on Si-MIS-systems and AlGaAs-GaAs heterojunctions, in: “Semiconductors, Quantum Well Structures, and Superlattices”, K. Ploog and N. T. Linh., eds., Edition des Physique, Les Ulis (1986).Google Scholar
  31. 31.
    Wassermeier, H. Pohlmann and J. P. Kotthaus, Magnetoconductivity of inversion electrons in periodic MOS-microstructures on Si, in: “The Physics of Semiconductors”, O. Engströni, ed., World Scientific, Singapore (1987).Google Scholar
  32. 32.
    P. Kotthaus, W. Hansen, H, Pohlmann, M. Wassermeier and K. Ploog, Intersubband resonances in quasi-one-dimensional channels, Surf, Sci., to be published.Google Scholar
  33. 33.
    Merkt, C. Sikorski and J. P. Kotthaus, Spectroscopy of one-dimensional subbands on InSb, Superlattices and Microstructures, to be published.Google Scholar
  34. 34.
    Hansen, J. P. Kotthaus, A. Chaplik and K. Ploog, Electronic excitations in laterally microstructured AlGaAs-GaAs heterojunctions, in: “The Application of High Magnetic Fields in Semiconductor Physics”, G. Landwehr, ed., Springer, Heidelberg (1987).Google Scholar
  35. 35.
    V. Chaplik, Absorption and emission of electromagnetic waves by two-dimensional plasmons, Surf. Sci. Rep. 5:289 (1985).ADSCrossRefGoogle Scholar
  36. 36.
    T. Zettler and J. P. Kotthaus, to be published.Google Scholar
  37. 37.
    S. E. Laux and F. Stern, Electron states in narrow gate-induced channels in Si, Appl. Phys. Lett. 49:91 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    S. J. Allen, Jr., H. L. Störmer and J. C. M. Hwang, Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures, Phys. Rev. B28:4875 (1983).ADSCrossRefGoogle Scholar
  39. 39.
    Das Sarma and W. Lai, Screening and elementary excitations in narrow-channel semiconductor microstructures, Phys. Rev. B32:1401 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jörg P. Kotthaus
    • 1
  1. 1.Institut für Angewandte PhysikUniversität HamburgHamburgGermany

Personalised recommendations