Polaron Effects and Optic Phonon Scattering in Heterostructures

  • R. J. Nicholas
  • M. A. Hopkins
  • M. A. Brummell
  • D. R. Leadley
Part of the NATO ASI Series book series (NATO ASI, volume 179)

Abstract

The interaction of electrons with the optic phonons in semiconductors is one of the most fundamental problems in solid state physics. In ionic crystals we expect a strong interaction with the longitudinal optic (LO) phonon, through the electric field of the polarization wave. The interaction with transverse optic (TO) phonons will be less strong because of their smaller electric field, except at very low wavevector, q, where the electromagnetic coupling may be strong. This coupling was one of the first examples of the use of quantum field theory in solid state physics (1), where the motion of an electron through an ionic solid was described as a composite particle, the polaron, consisting of an electron dressed by a virtual phonon cloud. Work on semiconductor heterostructures has generated new interest in this field, through the possible changes brought about by the electron confinement, the presence of interfaces and the influence of screening. Theoretical work (2–5) predicts that polaron effects in two-dimensional (2-D) systems should be stronger than in the corresponding bulk materials, but the finite wave functions in the third dimension (5–7) and screening (6,8,9) should reduce the coupling. Experiments on various 2-D systems have suggested both enhanced (10) and reduced (9,11–15) effects.

Keywords

Dioxide GaAs lIneR Haas Zucker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.E. Low and D. Pines, Phys. Rev. 98 414 (1955).ADSCrossRefMATHGoogle Scholar
  2. 2.
    S. Das Sarma and A. Madhukar, Phys. Rev. B22 2823 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    S. Das Sarma, Phys. Rev, Lett. 52 859 (1984).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    F.M. Peeters and J.T. Devreese, Phys. Rev. B31 3689 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    D.M. Larsen, Phys. Rev. B30 4595 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    S. Das Sarma, Phys. Rev. B27 2590 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    R. Lassnig and W. Zawadzki, Surf. Sci. 142 361 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    S. Das Sarma and B.A. Mason, Phys. Rev. B31 5536 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    H. Sigg, P. Wyder and J.A.A.J. Perenboom, Phys. Rev. B31 5253 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    M. Horst, U. Merkt, and J.P. Kotthaus, Phys. Rev. Lett. 50 754 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    J. Singleton, R.J. Nicholas and F. Nasir, Sol. Stat. Comro. 58 833 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    W. Seidenbusch, B. Lindemann, R. Lassnig, J. Edlinger and E. Gornik, Surf. Sci. 142 375 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    M. Horst, U. Merkt, W. Zawadzki, J.C. Maan and K. Ploog, Sol. Stat. Comm. 53 403 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Brummell, R.J. Nicholas, M.A. Hopkins, J.J. Harris and C.T. Foxon, Phys. Rev. Lett. 58 77 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Hopkins, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, to be published in Phys. Rev. B (1987).Google Scholar
  16. 16.
    R.J. Nicholas, Prog. Quantum Electron. 10 1 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    R.J. Nicholas, L.C. Brunei, S. Huant, K. Karrai, J.C. Portal, M.A. Brummell, M. Razeghi, K.Y. Cheng and A.Y. Cho, Phys. Rev. Lett. 55 883 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    L.C. Brunei, S. Huant, R.J. Nicholas, M.A. Hopkins, M.A. Brummell, K. Karrai, J.C. Portal, M. Razeghi, K.Y. Cheng and A.Y. Cho, Surf. Sci. 170 542 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Brummell, D.R. Leadley, R.J. Nicholas, J.J. Harris and C.T. Foxon, Surf. Sci. to be published.Google Scholar
  20. 20.
    R.J. Nicholas and H. Sigg, to be published (1988).Google Scholar
  21. 21.
    S. Das Sarma, Phys. Rev. Lett. 57 651 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Portal, J. Cisowski, R.J. Nicholas, M.A. Brummell, M. Razeghi and M.A. Poisson, J. Phys. C16 L573 (1983).ADSGoogle Scholar
  23. 23.
    M.A. Brummell, R.J. Nicholas, J.C. Portal, K.Y. Cheng and A.Y. Cho, J. Phys. C16 L579 (1983).ADSGoogle Scholar
  24. 24.
    D. Gauthier, J.C. Portal, M. Razeghi, D.R. Leadley, M.A. Hopkins, M.A. Brummell and R.J. Nicholas, to be published.Google Scholar
  25. 25.
    H. Frohlich, H. Pelzer and S. Zienau, Phil. Mag. 41 221 (1950).Google Scholar
  26. 26.
    H. Frohlich, Adv. Phys. 3 325 (1954).ADSCrossRefGoogle Scholar
  27. 27.
    F.C. Brown, in “Polarons and Excitions”, ed. CG. Kupar and CD. Whitfield, Oliver and Boyd, London, p.323 (1962).Google Scholar
  28. 28.
    D.M. Larsen, in “Polarons in Ionic Crystals and Polar Semiconductors”, ed. J.T. Devreese, North Holland, Amsterdam.Google Scholar
  29. 29.
    F.M. Peeters, Wu. Xiaoguang and J.T. Devreese, Phys. Rev. B33 4338 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    P.G. Harper, J.W. Hodby and R.A. Stradling, Rep. Prog. Phys. 36 1 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    G. Lindemann, R. Lassnig, W. Seidenbusch and E. Gornik, Phys. Rev. B28 4693 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    Wu. Xiaoguang, F.M. Peeters and J.T. Devreese, Phys. Rev. B34 2621 (1986).ADSGoogle Scholar
  33. 33.
    Wu. Xiaoguang, F.M. Peeters and J.T. Devreese, Phys. Stat. Sol. (b) 133 229 (1986).ADSCrossRefGoogle Scholar
  34. 34.
    Wu. Xiaoguang, F.M. Peeters and J.T. Devreese, Proc. 7th E.P.S. Conf., Pisa (1987), to be published in Physica.Google Scholar
  35. 35.
    CT. Foxon, J.J. Harris, R.E. Wheeler and D.E. Lacklison, J. Vac. Sci. Technol. B4 511 (1986).CrossRefGoogle Scholar
  36. 36.
    M.A. Hopkins, R.J. Nicholas, P. Pfeffer, W. Zawadzki, D. Gauthier, J.C Portal and M.A. di Forte-Poisson, Semicond. Sci. and Technol. in press (1987).Google Scholar
  37. 37.
    M. Braun and U. Rössler, J. Phys. C18 3365 (1985).ADSGoogle Scholar
  38. 38.
    W. Zawadzki and P. Pfeffer, Proc. Int. Conf., on the Application of High Magnetic Fields in Semiconductor Physics, Würzburg 1986, Springer-Verlag to be published.Google Scholar
  39. 39.
    J. Singleton, R.J. Nicholas, D.C. Rogers and C.T. Foxon, Surf. Sci. to be published (1987).Google Scholar
  40. 40.
    T. Ando and Y. Murayama, J. Phys. Soc. Japan 54 1519 (1985).ADSCrossRefGoogle Scholar
  41. 41.
    Th. Englert, J.C. Maan, Ch. Uihlein, D.C. Tsui and A.C. Gossard, Sol. Stat. Comm. 46 545 (1983).ADSCrossRefGoogle Scholar
  42. 42.
    R. Lassnig and E. Gornik, Sol. Stat. Comm. 47 959 (1983).ADSCrossRefGoogle Scholar
  43. 43.
    W. Seidenbusch, E. Gornik and G. Weimann, Physica 134B 314 (1985).Google Scholar
  44. 44.
    M. Brodsky and G. Lucovsky, Phys. Rev. Lett. 21 990 (1968).ADSCrossRefGoogle Scholar
  45. 45.
    A. Pinczuk, J.M. Worlock, R.E. Nahory and M.A. Pollack, Appl. Phys. Lett. 33 461 (1978).ADSCrossRefGoogle Scholar
  46. 46.
    T.P. Pearsall, R. Carles and J.C. Portal, Appl. Phys. Lett. 42 436 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    B.D. McCombe and R.J. Wagner, Adv. in Electronics and Electron Phys. 37 1 and 38 1 (1975).CrossRefGoogle Scholar
  48. 48a.
    R. Fuchs and K.L. Kliewer, Phys. Rev. 140 A2076 (1965);ADSCrossRefGoogle Scholar
  49. 48b.
    J.E. Zucker, A. Pinczuk, D.S. Chelma, A.C. Gossard and W. Wiegmann, Phys. Rev. Lett. 53 1280 (1984).ADSCrossRefGoogle Scholar
  50. 49.
    A. Mooradian and G.B. Wright, Phys. Rev. Lett. 16 999 (1966).ADSCrossRefGoogle Scholar
  51. 50.
    M. Zeismann, D. Heitmann and L.L. Chang, Phys. Rev. B35 4541 (1987).ADSCrossRefGoogle Scholar
  52. 51.
    T. Ando and Y. Uemura, J. Phys. Soc. Japan 36 959 (1974).ADSCrossRefGoogle Scholar
  53. 52.
    G. Abstreiter, J.P. Kotthaus, J.F. Koch and G. Dorda, Phys. Rev. B14 2480 (1976).ADSCrossRefGoogle Scholar
  54. 53.
    P. Voisin, Y. Guldner, J.P. Vieren, M. Voos, P. Delescluse and N.T. Linh, Appl. Phys. Lett. 39 982 (1981).ADSCrossRefGoogle Scholar
  55. 54.
    M.A. Brummell, R.J. Nicholas, L.C. Brunei, S. Huant, M. Baj, J.C. Portal, M. Razeghi, M.A. di Forte-Poisson, K.Y. Cheng and A.Y. Cho, Surf. Sci. 142 380 (1984).ADSCrossRefGoogle Scholar
  56. 55.
    W. Walukiewicz, H.E. Ruda, J. Lagowzki and H.C. Gatos, Phys. Rev. B30 4571 (1984).ADSCrossRefGoogle Scholar
  57. 56.
    M.A. Hopkins, D.F. Barnes, M.A. Brummell, R.J. Nicholas, J.J. Harris and C.T. Foxon, to be published (1988).Google Scholar
  58. 57.
    P.J. Price, Phys. Rev. B32 2643 (1985).ADSCrossRefGoogle Scholar
  59. 58.
    B. Vinter, Phys Rev. B33 5904 (1986).Google Scholar
  60. 59.
    R.L. Peterson, in “Semiconductors and Semi-metals”, Academic, New York, 10 221 (1975).Google Scholar
  61. 60.
    D.C Tsui, Th. Englert, A.Y. Cho and A.C. Gossard, Phys. Rev. Lett. 44 341 (1980).ADSCrossRefGoogle Scholar
  62. 61.
    Th. Englert, D.C. Tsui, J.C Portal, J. Beerens and A.C. Gossard, Sol. Stat. Comm. 44 1301 (1982).ADSCrossRefGoogle Scholar
  63. 62.
    G. Kido, N. Miura, H. Ohno and H. Sakaki, J. Phys. Soc. Japan 51 2168 (1982).ADSCrossRefGoogle Scholar
  64. 63.
    R.A. Stradling and R.A. Wood, J. Phys. C1 1711 (1968).ADSGoogle Scholar
  65. 64.
    R. Lassnig, Surf. Sci. 170 549 (1986).ADSCrossRefGoogle Scholar
  66. 65.
    A.C. Maciel, L.C. Campelo Cruz and J.F. Ryan, J. Phys. C20 3041 (1987).ADSGoogle Scholar
  67. 66.
    T. Ando, A.B. Fowler and F. Stern, Rev. Mod. Phys. 54 437 (1982).ADSCrossRefGoogle Scholar
  68. 67.
    D.R. Leadley, M.A. Brummeil, R.J. Nicholas,’J.J. Harris and C.T. Foxon, Proc. 5th Int. Conf. on Hot Carriers in Semiconductors, Boston,, 1987, to be published.Google Scholar
  69. 68.
    J.C. Portal, G. Gregoris, M.A. Brummeil, R.J. Nicholas, M. Razeghi M.A. di Forte-Poisson, K.Y. Cheng and A.Y. Cho. Surf. Sci. 142 368 (1984).ADSCrossRefGoogle Scholar
  70. 69.
    K. Hess and P. Vogl, Sol. Stat. Coram. 30 807 (1979).ADSCrossRefGoogle Scholar
  71. 70.
    R. Lassnig and W. Zawadzki, Surf. Sci. 142 361 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • R. J. Nicholas
    • 1
  • M. A. Hopkins
    • 1
  • M. A. Brummell
    • 1
  • D. R. Leadley
    • 1
  1. 1.Clarendon LaboratoryOxfordUK

Personalised recommendations