Transgenic Arabidopsis

  • G. P. Rédei
  • Csaba Koncz
  • Jeff Schell
Part of the Stadler Genetics Symposia Series book series (SGSS)

Abstract

A nuclear gene locus of (Arabidopsis thaliana L.) (Rédei, 1973; Rédei and Plurad, 1973) causes hereditary alterations in the genetic material of the plastids. Its effectiveness is quite remarkable in as much as the rate mutation when either one of the three known recessive alleles become homozygous, increases by a factor of about 106over the spontaneous level. The mutator activity is revealed by the numerous green, yellow and white sectors on the leaves and stems of the plants (Figs. 1 and 2). Some of the mutations induced have pleiotropic effect: in addition to alteration of the plastids the shape of the leaves is also affected. Since the sorting out of the mutant plastids is clearly a non-random process, leaves or entire plants may become homo- or near homoplastidic within a single generation (Rédei, 1974). The homoplastidic condition generally cannot be stabilized, however, unless the recessive inducer is blocked by rendering the plants heterozygous or by the removal of the chm alleles from the nucleus. Details of these procedures were worked out and their effectiveness has been proven (Rédei, unpublished).

Keywords

Maize Carbide Recombination Adenosine Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. André, D., Colau, D., Schell, J., Van Montagu, M., and Hernalsteens, J-P. 1987, Gene tagging in plants by a T-DNA insertion mutagen that generates ARH(31)II-plant gene fusions, Mol. Gen. Genet, 204: 512–518.CrossRefGoogle Scholar
  2. Cocking, E. C., and Davey, M. R., 1987, Gene transfer in cereals, Science, 236: 1259–1262.PubMedCrossRefGoogle Scholar
  3. De Greeve, H., Leemans, J., Hernalsteens, J. P., Thia-Toong, L., De Beuckeleer, M., Willmitzer, L., Otten, L., Van Montagu, M., and Schell, J., 1982, Regeneration of normal and fertile plants that express octopine synthase, from tobacco grown galls after deletion of tumour-controlling functions, Nature, 300: 752–755.CrossRefGoogle Scholar
  4. De Greeve, H., Leemans, J., Hernalsteens, J. P., Thia-Toong, L., De Beuckeleer, M., Willmitzer, L., Otten, L., Van Montagu, M., and Schell, J., 1982, Regeneration of normal and fertile plants that express octopine synthase, from tobacco grown galls after deletion of tumour-controlling functions, Nature, 300: 752–755.CrossRefGoogle Scholar
  5. Gamborg, O. L., Miller, R. A., and Ojima, K., 1968, Nutrient requirements of suspension cultures of soybean root cells, Expt. Cell Res, 50: 151–158.CrossRefGoogle Scholar
  6. Haas, M. J., and Dowding, J. E., 1975, Aminoglycoside-modifying enzymes, Methods of Enzymology, 43: 611–627.CrossRefGoogle Scholar
  7. Horsch, R. B., Frey, J. E., Hoffmann, N. L., Wallroth, M., Eichholtz, D. A., Rogers, S. G., and Fraley, R. T., 1985, A simple and general method for transferring genes into plants, Science, 227: 1229–1231.CrossRefGoogle Scholar
  8. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature, 327: 70–73.CrossRefGoogle Scholar
  9. Lee-Chen, S., and Steinitz-Sears, L. M., 1976, The location of linkage groups in Arabidopsis thaliana, Can. J. Genet. Cytol, 9: 381–384.Google Scholar
  10. Liechtenstein, C. P., and Draper, J., 1985, Genetic engineering of plants, in: “DNA Cloning: A Practical Approach”, Gover, D. M., Ed., IRL Press, Washington, DC, 2: 67–119.Google Scholar
  11. Lloyd, A., Barnason, A. R., Rogers, S. G., Byrne, M. C., Fraley, R. T., and Horsch, R. B., 1986, Transformation of Arabidopsis thalianawith Agrobacterium tumefaciens, Science, 234: 464–466.PubMedCrossRefGoogle Scholar
  12. Marton, L., Wullems, G. J., Molendijk, L., and Schilperoort, R. A., 1979, In vitro transformation of cultured cells from Nicotiana tabacumby Agrobacterium tumefaciens, Nature, 277: 129–131.CrossRefGoogle Scholar
  13. McClintock, B ., 1931, Cytological observations of deficiencies involving known genes, translocations and an inversion in Zea mays, Missouri Agricultural Experiment Station, Research Bull. 163.Google Scholar
  14. McClintock, B., 1938, The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases, Missouri Agricultural Experiment Station Research Bull. 290.Google Scholar
  15. McClintock, B., 1951, Chromosome organization and genetic expression, Cold Spring Harbor Symp. Quant. Biol, 16: 13–47.PubMedGoogle Scholar
  16. McClintock, B., 1956, Controlling elements and the gene, Cold Spring Harbor Symp. Quant. Biol, 21: 197–216.PubMedGoogle Scholar
  17. Moazed, D., and Noller, H. F., 1987, Interaction of antibiotics with functional sites in the 16S ribosomal RNA, Nature, 327: 389–394.PubMedCrossRefGoogle Scholar
  18. Murashige, T., and Skoog, F., 1962, A revised, medium for rapid growth and bio assays with tobacco tissue culture, Physiol. Plant, 15: 473–497.CrossRefGoogle Scholar
  19. Murphy, P., and Otten, L., 1985, Detection of opines in transformed plant tissue, in: “EMBO Course on Transfer and Expression of Genes inHigher Plants”, Max-Planck-Institut fur Züchtungsforsch., Koln, FRG., pp. 41–46, Czernilofsky, P., Schell, J., and Willmitzer, L., eds.Google Scholar
  20. Otten, L., De Greve, Hernalsteens, J. P., Van Montague, M., Schieder, O., Straub, J., and Schell, J, 1981, Mendelian transmission of genes introduced into plants by the Ti plasmids of Agrobacterium tumefacients, Mol. Gen. Genet, 183: 209–213.PubMedCrossRefGoogle Scholar
  21. Otten, L., and Schilperoort, R. A., 1978, A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities, Biochem. Biophys. Acta, 517: 497–500.Google Scholar
  22. Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I., 1984, Direct gene transfer to plants, EMBO J, 3: 2717–2722.PubMedGoogle Scholar
  23. Potter, H., Weir, L., and Leder, P., 1984, Enhancer-dependent expression of human immunoglobulin genes intoduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sei., USA, 81: 7161–7165.CrossRefGoogle Scholar
  24. Pruitt, R. E., and Meyerowitz, E. M., 1986, Characterization of the genome of Arabidopsis thaliana, J. Mol. Biol, 187: 169–183.PubMedCrossRefGoogle Scholar
  25. Rédei, G. P., 1963, Somatic instability caused by a cysteine-sensitive gene in Arabidopsis, Science, 139: 767–769.PubMedCrossRefGoogle Scholar
  26. Rédei, G. P., 1965, Genetic blocks in the thiamine synthesis of the angiosperm Arabidopsis, Amer. J. Bot, 52: 834–841.CrossRefGoogle Scholar
  27. Rédei, G. P., 1973, Extra-chromosomal mutability determined by a nuclear gene locus in Arabidopsis, Mutation Res, 18: 149–162.Google Scholar
  28. Rédei, G. P., 1974, Genetic mechanisms in differentiation and development. Pp. 183–209, in: “Genetic Manipulation with Plant Material”, Ledoux, L., ed., Plenum, New York.Google Scholar
  29. Rédei, G. P., 1982, “Genetics”, Macmillan, New York.Google Scholar
  30. Rédei, G. P., Acedo, G. N., and Sandhur S. S., 1984, Mutation induction and detection in Arabidopsis, in: “Mutation, Cancer and Malformation”, Chu, E. Y. and Generoso, W. M., eds., Plenum, New York, pp. 285–313.Google Scholar
  31. Rédei, G. P., Chung, S. C., and White, J. A., 1974, Mutants, antimetabolites and differentiation, Brookhaven Symp. Biol, 25: 281–296.Google Scholar
  32. Rédei, G. P., and Plurad, S. B., 1973, Hereditary structural alterations of plastids induced by a nuclear mutator gene in Arabidopsis, Protoplasma, 77: 361–380.CrossRefGoogle Scholar
  33. Reiss, B., Sprengel, R., Will, H., and Scalier, H., 1984, A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene, 30: 211–218.PubMedCrossRefGoogle Scholar
  34. Schreier, P., Seftor, E. A., Schell, J., and Bohnert, B. J., 1985, The use of nuclear encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts, EMBO J, 4: 25–32.PubMedGoogle Scholar
  35. Shapiro, J. A., ed., 1983, “Mobile Genetic elements”, Acad. Press, New York.Google Scholar
  36. Southern, E., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol, 98: 503–517.PubMedCrossRefGoogle Scholar
  37. Umezawa, H., Okanishi, M., Kondo, S., Hamana, K., Utahara, R., and Maeda, K., 1967, Phosphorylative inactivation of aminoglycosidic antibiotics by Escherichia colicarrying R factor, Science, 157: 1559–1561.PubMedGoogle Scholar
  38. Wallroth, M., Geräts, A.G.M., Rogers, S. G., Fraley, R. T., and Horsch, R. B., 1986, Chromosomal localization of foreign genes in Petunia hybrida, Mol. Gen. Genet, 202: 6–15.CrossRefGoogle Scholar
  39. Wang, K., Stachel, S. E., Timmerman, B., Van Montagu, M., and Zambryski, P. C., 1987, Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression, Science, 235: 587–591.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • G. P. Rédei
    • 1
    • 2
  • Csaba Koncz
    • 1
    • 2
  • Jeff Schell
    • 1
    • 2
  1. 1.University of MissouriColumbiaUSA
  2. 2.Max-Planck-InstitutKöln 30Germany

Personalised recommendations