Skip to main content

Chromosomes and Kinetochores do More in Mitosis than Previously Thought

  • Chapter

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

Chromosomes do more to promote their own distribution to the daughter cells in mitosis than we thought. A role of chromosomes in their own movement was made clear in the 1930’s when it was recognized that a site on each chromosome — the kinetochore or centromere — is essential for normal chromosome movement in mitosis and meiosis (review: Schrader, 1953). Since then, one certain role of the kinetochore has been identified: the mechanical attachment of each chromosome to the spindle. Now, new aspects of attachment have been revealed as well as less expected chromosomal activities. My aim is an informal account of recent surprises followed by some remarks on the nature of the kinetochore as a gene and its evolutionary origin. More extensive reviews of all but the most recent work include Rieder (1982), McIntosh (1985), and Brinkley et al. (1985)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bastmeyer, M., Steffen, W., and Fuge, H., 1986, Immunostaining of spindle components in tipulid spermatocytes using a serum against pericentriolar material, Eur. J. Cell Biol, 42: 305–310

    PubMed  CAS  Google Scholar 

  • Blackburn, E. H., and Szostak, J. W., 1984, The molecular structure of centromeres and telomeres, Ann. Rev. Biochem, 53: 163–194

    Article  PubMed  CAS  Google Scholar 

  • Bloom, K., Hill, A., and Yeh, E., 1986, Structural analysis of a yeast centromere, BioEssays, 4: 100–104

    Article  PubMed  CAS  Google Scholar 

  • Brinkley, B. R., Tousson, A., and Valdivia, M. M., 1985, The kinetochore of mammalian chromosomes: structure and function in normal mitosis and aneuploidy, in: “Aneuploidy,” V. L. Dellarco, P. E. Voytek, and A. Hollaender, eds., Plenum Press, New York. pp. 243–267

    Google Scholar 

  • Bryan, J., 1976, A quantitative analysis of microtubule elongation, J. Cell Biol, 71: 749–767

    Article  PubMed  CAS  Google Scholar 

  • Carbon, J., 1984, Yeast centromeres: structure and function, Cell, 37: 351–353

    Article  PubMed  CAS  Google Scholar 

  • Church, K., and Lin, H.-P. P., 1982, Meiosis in Drosophila melanogaster. II. The prometaphase-I kinetochore microtubule bundle and kinetochore orientation in males, J. Cell Biol, 93: 365–373

    Article  PubMed  CAS  Google Scholar 

  • Church, K., and Lin, H.-P. P., 1985, Kinetochore microtubules and chromosome movement during prometaphase in Drosophila melanogaster spermatocytes studied in life and with the electron microscope, Chromosoma, 92: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Church, K., Nicklas, R. B., and Lin, H.-P. P., 1986, Micromanipulated bivalents can trigger mini-spindle formation in Drosophila melanogaster spermatocyte cytoplasm, J. Cell Biol, 103: 2765–2773

    Article  PubMed  CAS  Google Scholar 

  • Cornman, I., 1944, A summary of evidence in favor of the traction fiber in mitosis, Amer. Naturalist, 78: 410–422

    Article  Google Scholar 

  • De Brabander, M., Aerts, F., De Mey, J., Geuens, G., Moeremans, M., Nuydens, R., and Willebrords, R., 1985, Microtubule dynamics and the mitotic cycle: a model, in: “Aneuploidy,” V. L. Dellarco, P. E. Voytek, and A. Hollaender, eds., Plenum Press, New York. pp. 269–278

    Google Scholar 

  • De Brabander, M., Geuens, G., De Mey, J., and Joniau, M., 1981, Nucleated assembly of mitotic microtubules in living PTK2cells after release from nocodazole treatment, Cell Motility, 1: 469–483

    Article  Google Scholar 

  • Dietz, R., 1966, The dispensability of the centrioles in the spermatocyte divisions of Pales ferruginea(Nematocera), in: “Chromosomes Today,” vol. 1, C. D. Darlington and K. R. Lewis, eds., Oliver and Boyd, Edinburgh, pp. 161–166

    Google Scholar 

  • Ellis, G. W., and Begg, D. A., 1981, Chromosome micromanipulation studies, in: “Mitosis/Cytokinesis,” A. M. Zimmerman and A. Forer, eds., Academic Press, New York. pp. 155–179

    Google Scholar 

  • Forer, A., 1976, Actin filaments and birefringent spindle fibers during chromosome movements, in: “Cell Motility, Book C,” R. Goldman, T. Pollard, and J. Rosenbaum, eds., Cold Spring Harbor Laboratory, pp. 1273–1293

    Google Scholar 

  • Gorbsky, G. J., Sammak, P. J., and Borisy, G. G., 1987, Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends, J. Cell Biol, 104: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., 1985, Theoretical problems related to the attachment of microtubules to kinetochores, Proc. Natl. Acad. Sci. USA, 82: 4404–4408

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., 1986, Kinetic diagram and free energy diagram for kinesin in microtubule-related motility, Proc. Natl. Acad. Sci. USA, 83: 3326–3330

    Article  PubMed  CAS  Google Scholar 

  • Horio, T., and Hotani, H., 1986, Visualization of the dynamic instability of individual microtubules by dark-field microscopy, Nature, 321: 605–607

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., 1981, Cell division and the mitotic spindle, J. Cell Biol, 91: 131s–147s

    Article  PubMed  CAS  Google Scholar 

  • Jensen, C. G., 1982, Dynamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm, J. Cell Biol, 92: 540–558

    Article  PubMed  CAS  Google Scholar 

  • Karsenti, E., Newport, J., and Kirschner, M., 1984, Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase, J. Cell Biol, 99: 47s–54s

    Article  PubMed  CAS  Google Scholar 

  • Kirschner, M., and Mitchison, T., 1986, Beyond self-assembly: from microtubules to morphogenesis, Cell, 45: 329–342

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R. L., and Wilson, L., 1981, Microtubule treadmills — possible molecular machinery, Nature, 293: 705–711

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L., 1970, “Origin of Eukaryotic Cells,” Yale University Press, New Haven

    Google Scholar 

  • Margulis, L., and Sagan, D., 1986, “Origins of Sex,” Yale University Press, New Haven

    Google Scholar 

  • Maro, B., Johnson, M. H., Webb, M., and Flach, G., 1986, Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane, J. Embryol. Exp. Morph, 92: 11–32

    PubMed  CAS  Google Scholar 

  • Mazia, D., 1984, Centrosomes and mitotic poles, Exp. Cell Res, 153: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Mazia, D., Paweletz, N., Sluder, G., and Finze, E.-M., 1981, Cooperation of kinetochores and pole in the establishment of monopolar mitotic apparatus, Proc. Natl. Acad. Sci. USA, 78: 377–381

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, J. R., 1981, Microtubule polarity and interaction in mitotic spindle function, in: “International Cell Biology 1980–81,” H. G. Schweiger, ed., Springer Verlag, Berlin, pp. 359–368

    Google Scholar 

  • McIntosh, J. R., 1985, Spindle structure and the mechanisms of chromosome movement, in: “Aneuploidy,” V. L. Dellarco, P. E. Voytek, and A. Hollaender, eds., Plenum Press, New York, pp. 197–229

    Google Scholar 

  • McIntosh, J. R., and Euteneuer, U., 1984, Tubulin hooks as probes for microtubule polarity: An analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle, J. Cell Biol, 98: 525–533

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, J. R., Saxton, W. M., and Stemple, D. L., 1986, Differential stability of mitotic microtubules as measured by fluorescence redistribution after photobleaching (FRAP), J. Cell Biol, 103: 270a (abstr.)

    Google Scholar 

  • Mitchison, T. J., 1986, The role of microtubule polarity in the movement of kinesin and kinetochores, J. Cell Sci, Suppl. 5: 121–128

    CAS  Google Scholar 

  • Mitchison, T., Evans, L., Schulze, E., and Kirschner, M., 1986, Sites of microtubule assembly and disassembly in the mitotic spindle, Cell, 45: 515–527

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T. J., and Kirschner, M. W., 1985a, Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J. Cell Biol, 101: 755–765

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T. J., and Kirschner, M. W., 1985b, Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation, J. Cell Biol101: 766–777

    Article  PubMed  CAS  Google Scholar 

  • Nicklas, R. B., 1971, Mitosis, in: “Advances in Cell Biology,” vol. 2, D. M. Prescott, L. Goldstein, and E. McConkey, eds., Appleton-Century-Crofts, New York. pp. 225–297

    Google Scholar 

  • Nicklas, R. B., 1983, Measurements of the force produced by the mitotic spindle in anaphase, J. Cell Biol, 97: 542–548

    Article  PubMed  CAS  Google Scholar 

  • Nicklas, R. B., 1985, Mitosis in eukaryotic cells: an overview of chromosome distribution, in: “Aneuploidy,” V. L. Dellarco, P. E. Voytek, and A. Hollaender, eds., Plenum Press, New York, pp. 183–195

    Google Scholar 

  • Nicklas, R. B., Church, K., Lin, H.-P. P., and Gordon, G. W., 1985, Chromosomes enhance microtubule assembly or stability, in: “Microtubules and Microtubule Inhibitors 1985, ” M. De Brabander and J. De Mey, eds., Elsevier Science Publishers B. V., Amsterdam, pp. 261–268

    Google Scholar 

  • Nicklas, R. B., and Gordon, G. W., 1985, The total length of spindle microtubules depends on the number of chromosomes present, J. Cell Biol, 100: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Nicklas, R. B., and Kubai, D. F., 1985, Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation, Chromosoma, 92: 313–324

    Article  PubMed  CAS  Google Scholar 

  • Nicklas, R. B., Kubai, D. F., and Hays, T. S., 1982, Spindle microtubules and their mechanical associations after micromanipulation in anaphase, J. Cell Biol, 95: 91–104

    Article  PubMed  CAS  Google Scholar 

  • Palmer, D. K., O’Day, K., and Margolis, R. L., 1986, The 17 kilodalton centromere specific human autoantigen is a histone-like protein, J. Cell Biol, 103: 412a (abstr.)

    Google Scholar 

  • Peterson, J, B., and Ris, H., 1976, Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cervisiae, J. Cell Sci, 22: 219–242

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps, J., 1986, Mitotic mechanisms: an alternative view, Trends in Biochem. Sci, 11: 504–507

    Article  Google Scholar 

  • Rattner, J. B., 1986, Organization within the mammalian kinetochore, Chromosoma, 93: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Rieder, C. L., 1982, The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber, Int. Rev. Cytol79: 1–58

    Article  PubMed  CAS  Google Scholar 

  • Ris, H., and Witt, P. L., 1981, Structure of the mammalian kinetochore, Chromosoma, 82: 153–170

    Article  PubMed  CAS  Google Scholar 

  • Salmon, E. D., 1975, Spindle microtubules: thermodynamics of in vivoassembly and role in chromosome movement, Ann. N.Y. Acad. Sci, 253: 383–406

    Article  PubMed  CAS  Google Scholar 

  • Salmon, E. D., Leslie, R. J., Saxton, W. M., Karow, M. L., and McIntosh, J. R., 1984, Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching, J. Cell Biol, 99: 2165–2174

    Article  PubMed  CAS  Google Scholar 

  • Schaap, C. J., and Forer, A., 1984, Video digitizer analysis of birefringence along the lengths of single chromosomal spindle fibres, J. Cell Sci, 65: 21–40

    PubMed  CAS  Google Scholar 

  • Schrader, F., 1953, “Mitosis,” 2nd ed., Columbia University Press, New York

    Google Scholar 

  • Sluder, G., and Rieder, C. L., 1985, Centriole number and the reproductive capacity of spindle poles, J. Cell Biol, 100: 887–896

    Article  PubMed  CAS  Google Scholar 

  • Steffen, W., Fuge, H., Dietz, R., Bastmeyer, M., and Müller, G., 1986, Aster-free spindle poles in insect spermatocytes: evidence for chromosome-induced spindle formation?, J. Cell Biol, 102: 1679–1687

    Article  PubMed  CAS  Google Scholar 

  • Valdivia, M. M., Maul, G. G., Jimenez, S. A., Kidd, V., and Brinkley, B. R., 1986., A putative kinetochore cDNA clone isolated by using human autoantibodies from scleroderma crest patients, J. Cell Biol., 103:491a (abstr.)

    Google Scholar 

  • Witt, P. L., Ris, H., and Borisy, G. G., 1980, Origin of kinetochore microtubules in Chinese hamster ovary cells, Chromosoma, 81: 483–505

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Nicklas, R.B. (1988). Chromosomes and Kinetochores do More in Mitosis than Previously Thought. In: Gustafson, J.P., Appels, R. (eds) Chromosome Structure and Function. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1037-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1037-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8304-1

  • Online ISBN: 978-1-4613-1037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics