Skip to main content

Quantitative Cladistic Analyses of Chromosomal Banding Data Among Species in Three Orders of Mammals: Hominoid Primates, Felids and Arvicolid Rodents

  • Chapter
Chromosome Structure and Function

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

Over the past two decades a number of technical advances have been made which have improved the resolving power of differential chromosome staining procedures. For example, Q-banding (Caspersson, et al., 1970), G-banding (Seabright, 1971), and R- banding (Dutrillaux and Lejeune, 1971) all produce longitudinal chromosomal differentiation, enabling the identification of homologous elements both within and between species. C-banding provides determination of the amount and location of constitutive heterochromatin (Sumner, 1972), whereas a number of fluorochromes, when used in conjunction with the appropriate counterstain, produce regional banding patterns or highlight specific heterochromatic regions (Schweizer, 1981). Staining with silver nitrate has been shown to identify the chromosomal locations of transcriptionally active 18S + 28S ribosomal genes (rDNA) (Bloom and Goodpasture, 1976). Primate chromosomes have been shown to stain differentially against a rodent background in somatic cell hybrids using the alkaline Giemsa (G-ll) staining procedure (Bobrow and Cross, 1974). Incorporation of tritiated thymidine or bromodeoxyuridine (BrdU) followed by the appropriate staining allows for the visualization of sister chromatic exchanges (Perry and Wolff, 1974)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, K. W., 1986, Organization of mitotic chromosomes, in: “Chromosome Structure and Function,” M. S. Risley, ed., Van Nostrand Reinhold Co., New York, pp. 92–125,

    Google Scholar 

  • Baker, R. J., Qumsiyeh, M. B., and Hood, C. S., 1987, Role of chromosome banding patterns in understanding mammalian evolution, in: “Current Mammalogy”, Vol. I, H. H Genoways, ed., Plenum Publishing Co., New York, pp. 67–96.

    Google Scholar 

  • Benveniste, R. E., 1985, The contributions of retroviruses to the study of mammalian evolution, in: “Molecular Evolutionary Genetics,” R. J. Maclntyre, ed., Plenum Publishing Co., New York, pp. 359–417.

    Google Scholar 

  • Benveniste, R. E., and Todaro, G. J., 1976, Evolution of type C viral genes: Evidence for an Asian origin of man, Nature, 261: 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, N. O., Bianchi, M. S., Cleaver, J. E., and Wolff, S., 1985, The pattern of restriction enzyme-induced banding in the chromosomes of chimpanzee, gorilla, and orangutan and its evolutionary significance, J. Mol. Evol., 22:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, S. E., and Goodpasture, C., 1976, An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes, Hum. Genet. 34:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Bobrow, M., and Cross, J., 1974, Differential staining of human and mouse chromosomes in interspecific cell hybrids, Nature, 251: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Bush, G. L., Case, S. M., Wilson, A. C., and Patton, J. L., 1977, Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sei. U.S.A., 74: 3942–3946.

    Google Scholar 

  • Carleton, M. D ., 1981, A survey of gross stomach morphology in Microtinae (Rodentia: Muroidea), Z. Säugertierk., 46:93–108.

    Google Scholar 

  • Caspersson, T., Zech, L., and Johansson, C., 1970, Differential banding of alkylating fluorochromes in human chromosomes, Exp. Cell Res., 60:315–319.

    Article  PubMed  CAS  Google Scholar 

  • Camin, J. H., and Sokal, R. R., 1965, A method for deducing branching sequences in phylogeny, Evolution, 13: 311–326.

    Article  Google Scholar 

  • Chaline, J ., 1974, Esquisse de 1 evolution morphologique, biomètrique et chromosomique du genre Microtus(Arvicolidae, Rodentia) dans le Pléistocené de lf hémisphère nord, Bull. Soc, geol. Fr., 16:440–450.

    Google Scholar 

  • Collier, G. E., and O’Brien, S. J., 1985, A molecular phylogeny of the Felidae: immunological distance, Evolution, 39: 473–487.

    Article  Google Scholar 

  • Committee for standardization of chromosomes of Peromyscus, 1977, Standardized karyotype of deer mice, Peromyscus(Rodentia), Cytogenet. Cell Genet., 19:38–43. Day, W. H. E., 1983, Computationally difficult parsimony problems in phylogenetic systematics, J. Theor. Biol., 103:429–438.

    Article  Google Scholar 

  • Day, W. H. E ., 1983, Computationally difficult parsimony problems in phylogenetic systematics, J. Theor. Biol., 103:429–438.

    Article  Google Scholar 

  • Dutrillaux, B., and Lejeune, J., 1971, Sur une nouvelle technique d’analyse du caryotype humaine, C.R. Acad. Sei. Paris Ser. D., 272:2638–2640.

    CAS  Google Scholar 

  • Eldredge, N., and Cracraft, J., 1980, “Phylogenetic Patterns and the Evolutionary Process”, Columbia University Press, New York.

    Google Scholar 

  • Ewer, R. F., 1973, “The Carnivores,” Cornell University Press, Ithaca.

    Google Scholar 

  • Farris, J. S ., 1970, Methods for computing Wagner trees, Syst. Zool., 19:83–92.

    Article  Google Scholar 

  • Ferris, S. D., Wilson, A. C., and Brown, W. M., 1981, Evolutionary tree for apes and human based on cleavage maps of mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A., 78:2432–2436.

    Article  PubMed  CAS  Google Scholar 

  • Glass, G. E, and Martin, L. D., 1978, A multivariate comparison of some extant and fossil Felidae, Carnivore, 1: 80–87.

    Google Scholar 

  • Goldman, D., Giri, G., and O’Brien, S. J., 1987, A molecular phylogeny of the hominoid primates as indicated by two- dimensional protein electrophoresis, Proc. Natl. Acad. Sci. U.S.A., 84:3307–3311.

    Article  PubMed  CAS  Google Scholar 

  • Gromov, I. M., and Poliakov, I. A., 1977, “Polevki (Voles) (Microtinae): Fauna SSSR ( Mammals)”, Nauka, Moscow.

    Google Scholar 

  • Hall, E. R., and Cockrum, E. L., 1953, A synopsis of the North American microtine rodents, Univ. Kansas Publ. Mus. Nat. Hist., 5:373–498.

    Google Scholar 

  • Harper, M. E., and Saunders, G., 1981, Localization of single copy DNA sequences on G-banded human chromosomes by in situhybridization, Chromosoma (Berl.), 83: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Hemmer, H., 1978, The evolutionary systematics of living Felidae: present status and current problems, Carnivore, 1: 71–79.

    Google Scholar 

  • Herrington, S. J., 1983, Systematics of the Felidae: a quantitative analysis, Unpublished Master’s Thesis, Univ. of Oklahoma, Norman.

    Google Scholar 

  • Hinton, M ., 1926, Monograph of the voles and lemmings (Microtinae) living and extinct, Vol. I., Brit. Mus. Nat. Hist., London.

    Google Scholar 

  • Hooper, E. T., and Hart, B., 1962, A synopsis of recent North American microtine rodents, Misc. Publ. Mus. Zool. Univ., Michigan, 120:1–68.

    Google Scholar 

  • Kluge, A. G., and Farris, J. S., 1969, Quantitative phyletics and the origin of anurans, Syst. Zool. 18:1–32.

    Article  Google Scholar 

  • Kurten, B., 1968, “Pleistocene Mammals of Europe,” Aldine Press, Chicago.

    Google Scholar 

  • Lock, L. F., and Martin, G. R., 1986, Dosage compensation in mammals: X chromosome inactivation, in: “Chromosome Structure and Function,” M. S. Risley, ed., Van Nostrand Reinhold Co., New York, pp. 187–220.

    Google Scholar 

  • Mayr, E., 1969, “Principles of Systematic Zoology,” McGraw-Hill, New York.

    Google Scholar 

  • Modi, W. S ., 1986, Karyotypic differentiation among two sibling species pairs of New World microtine rodents, J. Mammal,. 67:159–165.

    Article  Google Scholar 

  • Modi, W. S ., 1987, Phylogenetic analyses of chromosomal banding patterns among the Nearctic Arvicolidae (Mammalia: Rodentia), Syst. Zool. (in press).

    Google Scholar 

  • Modi, W. S., Nash, W. G., Miyake, Y.-I., and O’Brien, S. J., 1987b, Comparative cytogenetic analyses of the Felidae (Carnivora), (submitted for publication).

    Google Scholar 

  • Modi, W. S., Nash, W. G., Ferrari, A. C., and O’Brien, S. J., 1987a, Cytogenetic methodologies for gene mapping and comparative analyses in mammalian cell culture systems, Gene Anal. Tech., 4:75–85.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, S. J., Collier, G. E., Benveniste, R. E., Nash, W. G., Newman, A. K., Simonson, J. M., Eichelberger, M. A., Seal, U. S., Bush, M., and Wildt, D. E., 1987, Setting the molecular clock in Felidae: The great cats, Panthera, in: “Tigers of the World: The Biology, Biopolitics, Management and Conservation of an Endangered Species,” R. L. Tilson, ed., Noyes Publications, Park Ridge (in press).

    Google Scholar 

  • O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E., 1985a, A molecular solution to the riddle of the giant panda’s phylogeny, Nature, 317: 140–144.

    Article  PubMed  Google Scholar 

  • O’Brien, S. J., Seuanez, H. N, and Womack, J. E., 1985b, On the evolution of genome organization in mammals, in: “Molecular Evolutionary Genetics (Monographs in Evolutionary Biology Series),” R. J. Maclntyre, ed., Plenum Press, New York, pp. 519–589.

    Google Scholar 

  • Perry, P., and Wolff, S., 1974, New Giemsa method for the differential staining of sister chromatids, Nature, 251: 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, D. M ., 1987, Cell reproduction, Int. Rev. Cytol., 100: 93–128.

    Article  PubMed  CAS  Google Scholar 

  • Ruddle, F. H., Chapman, V. M., Riccuiti, F., Murnane, M., Klebe, R., and Meera-Khan, P., 1971, Linkage relationships of seventeen human gene loci as determined by man-mouse somatic cell hybrids, Nature, 232: 69–73.

    CAS  Google Scholar 

  • Schweizer, D ., 1981, Counter-stain enhanced chromosome banding. Hum. Genet., 57:1–14.

    PubMed  CAS  Google Scholar 

  • Seabright, M., 1971, A rapid banding technique for human chromosomes, Lancet, ii 971–972.

    Article  Google Scholar 

  • Shows, T. B., Sakayuchi, A. Y., and Naylor, S. L., 1982, Mapping the human genome, cloned genes, DNA polymorphisms and inherited disease, in: “Advances in Human Genetics,” H. Harris, ed., Plenum Press, New York, Vol. 12, pp. 341–452.

    Google Scholar 

  • Sibley, C. G., and Ahlquist, J. E., 1984, The phylogeny of the hominoid primates as evidenced by DNA-DNA hybridization, J. Mol. Evol., 20:2–15.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, G. G., 1961, “Principles of Animal Taxonomy”, Columbia University Press, New York.

    Google Scholar 

  • Sneath, P. H. A., and Sokal, R. R., 1973, “Numerical Taxonomy,” W.H. Freeman Co., San Francisco.

    Google Scholar 

  • Sokal, R. R ., 1985, The continuing search for order, Am, Nat., 126:729–749.

    Article  Google Scholar 

  • Sumner, A. T ., 1972, A simple technique for demonstrating centromeric heterochromatin, Exp. Cell Res., 75:304–306.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L., 1984, PAUP: phylogenetic analysis using parsimony. Users manual,, version 2. 3. Illinois Nat. Hist. Survey, Champaign.

    Google Scholar 

  • Watrous, L. E., and Wheeler, Q. D., 1981, The outgroup comparison method of character analysis, Syst. Zool., 30:1–11.

    Article  Google Scholar 

  • Wiley, E. O., 1981, “Phylogenetics: The Theory and Practice of Phylogenetic Systematics,” J. H. Wiley and Sons, New York.

    Google Scholar 

  • Wurster-Hill, D. H., and Centerwall, W. R., 1982, The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids, Cytogenet. Cell Genet., 34:178–192.

    Article  PubMed  CAS  Google Scholar 

  • Wurster-Hill, D. H., and Gray, C. W., 1975, The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids, Cytogenet. Cell Genet., 15:306–331.

    Article  PubMed  CAS  Google Scholar 

  • Wurster-Hill, D. H., Doi, J., Izawa, M., and Ono, Y., 1987, A banded chromosome study of the Iriomote cat, Felis iriomotensis, J. Hered., 78:105–107.

    CAS  Google Scholar 

  • Yunis, J. J., and Prakash, O. M., 1982, The origin of man: a chromosomal pictorial legacy, Science, 215: 1505–1530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Modi, W.S., O’Brien, S.J. (1988). Quantitative Cladistic Analyses of Chromosomal Banding Data Among Species in Three Orders of Mammals: Hominoid Primates, Felids and Arvicolid Rodents. In: Gustafson, J.P., Appels, R. (eds) Chromosome Structure and Function. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1037-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1037-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8304-1

  • Online ISBN: 978-1-4613-1037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics