NMR Studies of Neutron-Irradiated Crystalline and Vitreous Silica

  • S. L. Chan
  • L. F. Gladden
  • S. R. Elliott


Some results of a 29Si NMR study of neutron-irradiated crystalline and vitreous SiO2 are reported. The spin-lattice relaxation time is found to change markedly with increasing neutron dose. Pronounced changes are also observed in the shape and position of the magic-angle spinning NMR lineshape. The shift in peak position for the metamict state is associated with a decrease in oxygen bond angle, and this is related to the densificaction of the glass observed upon neutron irradiation.


Neutron Irradiation Paramagnetic Center Neutron Dose Vitreous Silica Paramagnetic Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Lell, N.J. Kreidl and J.R. Hensler, “Progress in Ceramic Science”, ed. J.E. Burke (Pergamon), vol. 4, p.3 (1966).Google Scholar
  2. 2.
    See e.g. J. Arndt and D. Stoffler, Phys. Chem. Glasses 10:117 (1969).Google Scholar
  3. 3.
    C. Laermans, “Structure and Bonding in Non-crystalline Solids”, eds. G.E. Walrafen and A.K. Revesz (Plenum), p. 329 (1986).Google Scholar
  4. 4.
    T.L. Smith, P.J. Anthony and A.C. Anderson, Phys. Rev. B17:4997 (1978).Google Scholar
  5. 5.
    J.A. Weil, Phys. Chem. Min. 10:149 (1985).CrossRefGoogle Scholar
  6. 6.
    D.L. Griscom, J. Non-Cryst. Sol. 73:51 (1985).CrossRefGoogle Scholar
  7. 7.
    D.L. Griscom, in “Defects in Glasses”, eds. F.L. Galeener et al., Mat. Res. Soc. Symp. Proc. 61:213 (1986).Google Scholar
  8. 8.
    J.H. Stathis and M.A. Kastner, in “Defects in Glasses”, eds. F.L. Galeener et al., Mat. Res. Soc. Symp. Proc. 61:161 (1986); R.A.B. Devine, C. Fiori and J. Robertson, ibid 61:177 (1986).Google Scholar
  9. 9.
    D.K. Stevens, W.J. Sturm and R.H. Silsbee, J. Appl. Phys. 29:66 (1958).CrossRefGoogle Scholar
  10. 10.
    R. Dupree and R.F. Pettifer, Nature 308: 523 (1984).CrossRefGoogle Scholar
  11. 11.
    L.F. Gladden, T.A. Carpenter and S.R. Elliott, Phil. Mag. B53:L81 (1986)Google Scholar
  12. 12.
    J.V. Smith and C.S. Blackwell, Nature 303:223 (1983).CrossRefGoogle Scholar
  13. 13.
    H.D. Bale, R.E. Shepler and G.W. Gibbs, J. Appl. Phys. 41:241 (1970).CrossRefGoogle Scholar
  14. 14.
    R. Freeman and H.D.W. Hill, J. Chem. Phys. 54:3367 (1971).CrossRefGoogle Scholar
  15. 15.
    W.E. Blumberg, Phys. Rev. 119:79 (1960).CrossRefGoogle Scholar
  16. 16.
    M. Rubinstein, H.A. Resing, T.L. Reinecke and K.L. Ngai, Phys. Rev. Lett. 34:1444 (1975).CrossRefGoogle Scholar
  17. 17.
    J.B. Bates, R.W. Hendricks and L.B. Shaffer, J. Chem. Phys. 61:4163 (1974).CrossRefGoogle Scholar
  18. 18.
    R.L. Mozzi and B.E. Warren, J. Appl. Cryst. 2:164 (1969).CrossRefGoogle Scholar
  19. 19.
    R.A.B. Devine, R. Dupree, I. Farnan and J.J. Capponi, Phys. Rev. B35:2560 (1987).Google Scholar
  20. 20.
    F.L. Galeener, Sol. State Comm. 44:1037 (1982).CrossRefGoogle Scholar
  21. 21.
    Y.T. Thathachari and W.A. Tiller, J. Appl. Phys. 57:1805 (1985).CrossRefGoogle Scholar
  22. 22.
    R. Dupree, D. Holland and D.S. Williams, Phil. Mag. B50:L13 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. L. Chan
    • 1
  • L. F. Gladden
    • 1
  • S. R. Elliott
    • 1
  1. 1.Department of Physical ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations