Advertisement

Identification of Native Defects in a-SiO2

  • J. H. Stathis

Abstract

One of the most powerful experimental tools for the identification of defects in solids is electron paramagnetic resonance (EPR). In a-SiO2, however, the defects are diamagnetic in their ground state, and are therefore invisible to EPR. Because of this, researchers interested in the structure of defects in SiO2 have had to rely on the use of ionizing or heavy particle radiation (γ, e-, n, X,..) in order to generate paramagnetic defects which can then be detected by EPR1. While these studies have been very fruitful, and the question of the mechanism by which defects are generated in a glass by the influence of high-energy radiation is an interesting and important one2, they leave open a fundamental question. Namely, since ionizing radiation may create additional structural defects in the glass, either by direct knock-ons or by a radiolytic process such as a recombination-assisted reaction, one gains little or no information about the native defects present before irradiation. The identity and properties of these native defects in a-SiO2 are important both for technological reasons, and because they help us to understand the nature of glasses in general.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Paramagnetic Center Electron Paramagnetic Resonance Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.L. Griscom, Mat. Res. Soc. Symp. Proc., 61:213 (1986).CrossRefGoogle Scholar
  2. 2.
    D.L. Griscom, SPIE J. 541:38 (1985).Google Scholar
  3. 3.
    P.W. Anderson, Phys. Rev. Lett. 34:953 (1975).CrossRefGoogle Scholar
  4. 4.
    M. Kastner, D. Adler, and H. Fritzsche, Phys. Rev. Lett. 37:1504 (1976).CrossRefGoogle Scholar
  5. 5.
    J.H. Stathis and M.A. Kastner, Phys. Rev. B. 29:7079 (1984).Google Scholar
  6. 6.
    J.H. Stathis and M.A. Kastner, Mat. Res. Soc. Symp. Proc. 61:161 (1986).CrossRefGoogle Scholar
  7. 7.
    J.H. Stathis, Ph.D. Thesis, Massachusetts Institute of Technology, (unpublished), 1986.Google Scholar
  8. 8.
    D.V. Lang, R.A. Logan, and M. Jaros, Phys. Rev. B 19:1015 (1979).Google Scholar
  9. 9.
    M. Stavola, M. Levinson, J.L. Benton, and L.C. Kimmerling, Phys. Rev. B 30:832 (1984).Google Scholar
  10. 10.
    A. Chantre and D. Bois, Phys. Rev. B 31:7979 (1985); A. Chantre and L.C. Kimmerling, Appl. Phys. Lett. 48:1000 (1986).Google Scholar
  11. 11.
    E.R. Weber, Mat. Res. Soc. Symp. Proc. 46:169 (1985); M. Baeumler, U. Kaufmann, and J. Windscheif, Appl. Phys. Lett. 46:781 (1985).CrossRefGoogle Scholar
  12. 12.
    Suprasil-W1 is a trade name of Heraeus-Amersil, Sayerville, NJ 08872.Google Scholar
  13. 13.
    C. Fiori and R.A.B. Devine, Phys. Rev. Lett. 52:208l (1984).CrossRefGoogle Scholar
  14. 14.
    N.F. Mott, Adv. Phys. 26:363 (1977); J. Non-Cryst. Solids 40:1 (1980).CrossRefGoogle Scholar
  15. 15.
    R.A. Street and G. Lucovsky, Solid State Commun. 31:289 (1979); G. Lucovsky, Philos. Mag. B 4l:457 (1980).CrossRefGoogle Scholar
  16. 16.
    J.H. Stathis, Phys. Rev. Lett. 58:1448 (1987).CrossRefGoogle Scholar
  17. 17.
    R.A.B. Devine, C. Fiori, and J. Robertson, Mat. Res. Soc. Symp. 61:177 (1986).CrossRefGoogle Scholar
  18. 18.
    J. Simpson, J. Ritger, and F. Di Marcello, Mat. Res. Soc. Symp. 61:333 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. H. Stathis
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeigthsUSA

Personalised recommendations