Advertisement

Clinical Heterogeneity of the Lipidoses — A Short Overview

  • Armando Sena
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 150)

Abstract

In the last few years it has became evident that the clinical spectrum of the lipidoses and allied disorders in wider than originally thought. In this paper, we document this fact and briefly review the neurological clinical pictures of three pathological conditions: The hexosaminidase A (Hex A) and arylsulfatase A (ASA) deficiency states, and the adrenoleukodystrophy variants. In a second step, a comment is made about the pathophysiological mechanisms probably underlying the clinical manifestations of these disorders. It is noted the possible relevance of these findings for the understanding of other, apparentely unrelated neurological diseases, including amyotrophic lateral sclerosis and multiple sclerosis

Keywords

Multiple Sclerosis Amyotrophic Lateral Sclerosis Metachromatic Leukodystrophy Friedreich Ataxia Ganglioside Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. O’Brien, the Gangliosidoses, in: “The Metabolic Basis of Inherited Disease”, J.B. Stanbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein and M.S. Brown, ed., 5th ed., Mc Graw Hill, New York, 945 (1983).Google Scholar
  2. 2.
    E.M. Brett, R.B. Ellis, L. Haas, J.U. Ikonne, B.D. Lake, A.D. Patrick and R. Stephens. Late onset GM2-gangliosidoses: Clinical, pathologica and biochemical studies on eight patients, Arch. Pis. Child. 48:775 (1973).CrossRefGoogle Scholar
  3. 3.
    R.D. Adams and G. Lyon, “Neurology of Hereditary Metabolic Diseases c children”, McGraw Hill, New York (1982).Google Scholar
  4. 4.
    J.P. Willner, G.A. Grabowski, R.E. Gordon, A.N. Bender and R.J. Desnic Chronic GM2 gangliosidoses masquerading as atypical Friedreich ataxia Clinical, morphological and biochemical studies of nine cases, Neurology (NY) 31:787 (1981).Google Scholar
  5. 5.
    D. Meek, L.S. Wolfe, E. Adermann and F. Adermann, Juvenile progressiv dystonia: a new phenotype of GM2 gangliosisoses, Ann. Neurol:15:348 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    W. G. Johnson, H.J. Wigger, H.R. Karp, L.M. Glaubiger and L.P. Rowlan Juvenile spine muscular atrophy: A new hexosaminidase deficiency phen type, Ann. Neurol. 11:11 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Parnes, G. Karpati, S. Carpenter, Y.Kin, L.S. Wolfe and L. Suranyi Hexosaminidase A deficiency presenting as atypical juvenile-onset spi muscular atrophy, Arch. NeuroT.42:1176 (1985).Google Scholar
  8. 8.
    R. Navori, B. Padeh and A. Adam. Apparent deficiency of hexosaminidase A in healthy members of a family with tay-Sachs disease Am. J. Hum. Gene 25:287 (.1973).Google Scholar
  9. 9.
    R. Navon, Z. Argor, N. Brand, and U. Sandbank. Adult GM2 gangliosidos in association with Tay-Sachs disease: A new phenotype Neurology (Ny) 31:1397 (1981).Google Scholar
  10. 10.
    I. Rapin, K. Suzuki, K. Suzuki and M.P. Valsamis. Adult (chronic) GM2 gangliosidoses: Atypical spinocerebellar degeneration in a Jewish Sib ship. Arch. Neurol. 33:120 (1976).Google Scholar
  11. 11.
    W.G. Johnson. The clinical spectrum of hexosamidase deficiency diseases. Neurology 31:1453 (1981).PubMedGoogle Scholar
  12. 12.
    E.H. Kolödny and S.S. Raghavan. GM2 gangliosidoses. Hexosaminidase mutations not of the Tay-Sachs type produce unsual clinical variants. Trends Neurosci. 6:16 (1983).Google Scholar
  13. 13.
    Z. Argor and R. Navon. Clinical and genetic variations in the syndrome of adult GM2 gangliosidoses resselting from hexosaminidase A deficiency. Ann. Neurol. 16:14 (1984).Google Scholar
  14. 14.
    H. Mitsumoto, R.J. Sliman, I.A. Schafer, C.S. Sternick B. Kaufman, A. Wilbourn, and S.J. Horwitz. Motor neuron disease and adult hexosaminidase A deficiency in two families: Evidence for multisystem degeneration. Ann. Neurol. 17:378 (1985).Google Scholar
  15. 15.
    A.E. Harding, E.P. Young and F. Schon. Adult onset supranuclear ophtalmoplegia, cerebellar ataxia and neurogenic proximal muscle weakness in a brother and sister: Another hexosaminidase A deficiency Syndrome J. Neurol. Neuros. Psych. 50:687 (1987).Google Scholar
  16. 16.
    L.P. Rowland, Molecular genetics, pseudogenetics, and clinical neurology, Neurology 33:1179 (1983).PubMedGoogle Scholar
  17. 17.
    E.H. Kolodny and H.W. Moser, Sulfatide Lipidosis: Metachromatic Leukodystrophy, in: “The Metabolic Basis of Inherited Disease”, J.B. Stanbury, J.BTl/yngaarden, D.S. Frederickson, J.L. Goldstein, and M.S. Brown, ed. 5th ed., Mc Graw Hill, New York, 881 (1983).Google Scholar
  18. 18.
    G.M. McKhann, Metachromatic Leukodystrophy-clinical and enzymatic parameters, Neuropediat. 15 (suppl.) 4 (1984).Google Scholar
  19. 19.
    H.W. Moser, Leukoencephalopaties caused by metabolic disorders, in: “Handbook of clinical Neurology”, Vol.3 (47), J.C. Koetsier, ed., Elsevier Science Publishers B.V., 583 (1985).Google Scholar
  20. 20.
    M.T. Porter, A.L. Fluharty, J. Trammel and H.A. Kihara, correlation of intracellular cerebroside sulfate sulfatase activity in fibroblast with latency in metachromatic leukodystrophy. Biochem. Biophys. Res. Commun 44:660 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Dubois, J.C. Turpin and N. Baumann, Absence of ASA activity in healthy father of a patient with metachromatic leukodystrophy, N. Eng J. Med. 293:302 (1975).Google Scholar
  22. 22.
    S. Baldinger, M.E. Pierpont and D. A. Wenger, Pseudodeficiency of arylsulfatase A: A counseling dilemma, Clin. Genet. 31:70 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    E.H. Kolodny, S.S. Raghavan and I.T. Lott. Low sulfatidase activity and demyelinating disease. Neurology (Ny) 31(2) 86 (1981).Google Scholar
  24. 24.
    J. Zlotogora and G. Bach. Deficiency of lysosomal hydrolases in apparently healthy individuals. Am. J. Med. Genet. 14:73 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    H.W. Moser, A.E. Moser, I. Singh and B.P. O’Neill. Adrenoleukodystrophy: Survey of 303 cases: Biochemistry, Diagnosis and Therapy. Ann. Neurol. 16: 628 (.1984).Google Scholar
  26. 26.
    Y. Kishimoto, H.W. Moser and K. Suzuki, Adrenoleukodystrophy, in: “Handbook of Neurochemistry”, vol.10, A. Lajtha, ed., 2th ed.,~Tlenum Press, New York, 125 (1985).Google Scholar
  27. 27.
    W.W. Chen, P.A. Watkins, T. Osumi, T. Hashimoto and H.W. Moser. Peroxisomal β-oxidation enzyme proteins in adrenoleukodystrophy: Distinction between x-linked adrenoleukodystrophy and neonatal adrenolleuko dystrophy. Proc. Natl. Acad. Sci. USA 84:1425 (1987).Google Scholar
  28. 28.
    Case records of Massachusetts General Hospital. N. Engl.J.Med. 300: 1037 (1979).Google Scholar
  29. 29.
    J.M. Powers, H.H.Schaumburg and C.L. Gaffney. Kliiver-Bucy syndrome caused by adrenoleukodystrophy. Neurology (Ny) 30:1131 (1980).Google Scholar
  30. 30.
    C.D. Marsden, J.A. Obeso and A.E. Lang, Adrenoleukomyeloneuropathy presenting as spinocerebellar degeneration, Neurology (Ny) 32:1031 (1982).Google Scholar
  31. 31.
    I. Goto, T. Kobayashi, Y. Antoku, S. Tobimatsu and Y. Kuroiwa, Adrenoleukodystrophy and variants J. Neurol. Sci 72:103 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Ohno, H. Tsuchida, N. Kukuhara, T. Yuasa, H. Harayama, S. Tsuji and T. Miyatake, Adrenoleukodystrophy: A clinical variant presenting as olivopontocerebellar atrophy, J. Neurolr 231:167 (1984)Google Scholar
  33. 33.
    R.S. Peekham, M.C. Marshall Jr., P.M. Rosman, A. Farag, U. Kabadi and E.Z. Wallace. A variant of adrenomyeloneuropathy with hipothalamic-pituitary dysfunction and neurologic remission after glucocorticoid replacement therapy. Am. J. Med. 72:173 (1982).CrossRefGoogle Scholar
  34. 34.
    B. Molzer, H. Bernheimer, H. Budka, P. Pilz and K. Foifl. Accumulation of very long chain fatty acids in common to 3 variants of adrenoleukodystrophy, J. Neurol Sci. 51:301 (1981).Google Scholar
  35. 35.
    M.A. Morariu, J.L. Chason, R.A. Norum, H.W. Moser and B. Migeon, Adrenoleukodystrophy variant in a heterozygons female, Neurology (Ny) 32 (2) A81 (1982).Google Scholar
  36. 36.
    J.M. Dooley and B.A. Wright, Adrenoleukodystrophy mimicking multiple sclerosis, Can. J. Neurol. Sci. 12:73 (1985).PubMedGoogle Scholar
  37. 37.
    M.J. Noetzel, W.M. Landau and H.W. Moser, Adrenoleukodystrophy carrier state presenting as a chronic non progressive spinal cord disorder. Arch. Neurol. 44:566 (1987).Google Scholar
  38. 38.
    P.J. Walsh, Adrenoleukodystrophy. Report of two cases with relapsing and remitting courses. Arch. Neurol. 37:448 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    D. A’ves, M.M. Pires. A. Guimaraes and M.C. Miranda. Four cases of late onset metachromatic leucodystrophy in a family: clinical, biochemical and neuropathological studies. J.Neurol. Neuros. Psych. 49:1417 (1986).CrossRefGoogle Scholar
  40. 40.
    J.A.O. Besson. A diagnostic Pointer to Adult Metachromatic Leucodystrophy. Brit. J. Psychiat. 137:186 (1980).PubMedCrossRefGoogle Scholar
  41. 41.
    R.A.P. Kark and D.M. Becker. Multiple genotypes, multiple phenotypes, and partial defects, Muscle Nerve 4:31 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    Y.A. Hannun and R.M. Bell. Lysosphingolipids Inhibit Protein Kinase C: Implications for the Sphingolipidoses. Science 235:670 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    P.A. Wood, M.R. McBride, H.J. Baker and S.T. Christian. Fluorescence polarization analysis, lipid composition and Na, K-ATPase kinitics of synaptosomal membranes in feline GM, and GM2 gangliosidosis. J. Neurochem. 44:947 (1985).Google Scholar
  44. 44.
    H.S. Singer, J.T. Coyle, D.L. Weaver, N. Kawamura and H.J. Baker. Neurotransmitter chemistry in feline GM1 gangliosidosis. A model for human ganglioside storage disease. Ann. Neurol 12:37 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    R.S. Jope, H.J. Baker and D.J. Connor, Increased acetylcholina synthesis and release in brains of cats with GM1 gangliosidosis. J. Neurochem. 46:1567 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    R.W. Leedeen. Biology of gangliosides: Neuritogenic and neuronotrophic properties J. Neurosci. Res. 12:147 (1984).CrossRefGoogle Scholar
  47. 47.
    S. Hakomori, Ganglioside mediated modulationof growth factor receptor function and cell adhesion, in: “Gangliosides and Modulation of Neurona Function”, H. Rahmann, ed., “Springer Verlag, Berlin-Heidelberg, 465 (1987).Google Scholar
  48. 48.
    P.S. Spencer, M.S. Miller, S.M. Ross, B.W. Schwab and M.I. Sabri. Biochemical mechanisms underlying primary degeneration of axons, in:“Handbook of Neurochemistry”, Vol.9 A. Lajtha, ed., 2nd ed., Plenum Press, New York, 31 (.1985).Google Scholar
  49. 49.
    I. Kracun, H. Rösner, C. Cosovic and A. Stavljenic, Topographical atlas of the gangliosides of the adult human brain, J. Neurochem.43:979Google Scholar
  50. 50.
    W. Seifert, A. Wieraszko, H. Terlau and M.Holl mann, Gangliosides and neuronal plasticity in the hippocampus, in: “Gangliosides and Modulation of Neuronal Function”, H. Rahmann, ecT., Spriger Verlag, Berlin-Hiedelberg, 523 (1987).Google Scholar
  51. 51.
    B. Engelsen, Neurotransmitter glutamate: its clinical importance. Act. Neurol. Scand. 74:337 (1986).CrossRefGoogle Scholar
  52. 52.
    S.K. Kundu, Y. Harati and L.K. Misra, Sialosylglobotetraosylceramide: marker for amyotrophic lateral sclerosis, Biochem. Biophys. Res. Commi 118:82 (1984).Google Scholar
  53. 53.
    G. Dawson and K. Stefansson. Gangliosides of human spinal cord. Aberri composition of cords from patients with amyotrophic lateral sclerosis J. Neurosci. Res. 12:213 (1984)Google Scholar
  54. 54.
    M.M. Rapport, H. Donnenfeld, W. Brunner, B. Hungund and H. Bartfeld. Ganglioside Patterns in Amyotrophic lateral sclerosis brain regions, J Neurol. 18:60 (1985).Google Scholar
  55. 55.
    D. Cieilak, J. Szulc-Kuberska, H. Stepieri, and A. Klimek. Epidermal growth factor in human cerebrospinal fluid, reduced levels in amyotro phic lateral sclerosis. J. Neurol. 233:376 (1986).CrossRefGoogle Scholar
  56. 56.
    F.R. Brown III, W.W. Chen, D.A. Kirschner, K.L. Frayer, J.M. Powers, A.B. Moser and H.W. Moser. Myelin Membrane from Adrenoleukodystrophy Brain white-matter-Biochemical Properties. J. Neurochem. 41:341(198)Google Scholar
  57. 57.
    C.J. Reinecke, D.P. Knoll, P.J. Pretorius, H.S. Steyn and R.H.W. Simp: The correlation Between Biochemical and Histopathological Findings in Adrenoleukodystrophy. J. Neurol. Sci. 70:21 (1985).Google Scholar
  58. 58.
    G. Lyon and A. Goffinet. Genetics and Pathology of dysmyelinating disorders of the central nervous system. Comparison to animal models, J. “Neurological Mutations Affecting Myelination”, N. Baumann ed., Elsevier North-Holland Biomedical Press, 33 (1980)Google Scholar
  59. 59.
    D.E. Britton, S.A. Houff, R.M. Eiben, D.L.Madden, and j.L. Sever. Study of viral antibodies, oligoclonal IgG, in situ central nervous system ! production and lymphocyte rosetting in sex-linked recessive adrenoleul dystrophy. Neurology 27:396 (1977).Google Scholar
  60. 60.
    H. Bernheimer, H. Budka and P. Müller. Brain Tissue Immunoglobulins in Adrenoleukodystrophy: A comparison with Multiple Sclerosis and System-Lupus Erythematosus. Acta Neuropathol.(Berl) 59:95 (1983).Google Scholar
  61. 61.
    R.N. Rosemberg, “Neurogenetics. Principles and Practice”, Raven Press New York,(1986).Google Scholar
  62. 62.
    J. Clausen. Multiple Sclerosis, i n: “Handbook of Neurochemistry”, vol A. Lajtha ed. 2nd. ed., Plenum Press, New York, 175 (1985).Google Scholar
  63. 63.
    J.P. Larsen, G. Kraale, T. Riise, H. Nyland and J.A. Aarli. Multiple sclerosis-more than one disease? Acta Neurol. Scand. 72:145 (1985).PubMedCrossRefGoogle Scholar
  64. 64.
    W. McDonald. The mystery of the origin of multiple sclerosis. J. Neurol. Neuros. Psych. 49:113 (1986).CrossRefGoogle Scholar
  65. 65.
    L.R. Weitkamp. Multiple Sclerosis susceptibility. Arch. Neurol. 40: 399 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Armando Sena
    • 1
  1. 1.Departamento de Bioquímica, Faculdade de Ciéncias MédicasUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations