Skip to main content

Identification of the Enzymic Defect in X-Linked Adrenoleukodystrophy: Oxidation of Very Long Chain Fatty Acids is Deficient Due to an Impaired Ability of Peroxisomes to Activate Very Long Chain Fatty Acids

  • Conference paper
Lipid Storage Disorders

Abstract

Mitochondria were long thought to be the sole site of fatty acid β-oxidation. Following the discovery by Cooper and Beevers1 that castor bean endosperm glyoxysomes, organelles closely related to peroxisomes, contain a fatty acid β-oxidation system, peroxisomes from rat liver2 and various other mammalian tissues were subsequently found to catalyze fatty acyl-CoA β-oxidation as well (reviewed in Refs. 3-6). Like mitochondrial fatty acid β-oxidation, peroxisomal fatty acid β-oxidation proceeds via successive steps of dehydrogenation, hydration, dehydrogenation and thiolytic cleavage. These reactions are catalyzed by the specific peroxisomal β-oxidation enzyme proteins acyl-CoA oxidase (EC 1.3.99.3), the bifunctional protein with enoyl-CoA hydratase (EC 4.2.1.17) and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities and 3-oxoacyl-CoA thiolase (EC 2.3.1.16).7 Despite the apparent similarities in architecture between the β-oxidation systems in peroxisomes and mitochondria, there are a number of important differences between the two systems with regard to the properties of the individual enzymes, cofactor requirements, coupling to energy production etc. Moreover, the peroxisomal and mitochondrial β-oxidation systems have different substrate specificities. Studies by Moser and coworkers for instance have shown that very long chain fatty acids are primarily oxidized in peroxisomes, at least in rat liver.8 That this is also true in man is indicated by the finding of elevated very long chain fatty acid levels in tissues and body fluids from patients suffering from the cerebro-hepato-renal syndrome of Zellweger in which morphologically distinguishable peroxisomes are known to be absent.9 Recent immunoblotting studies have shown that the three peroxisomal β-oxidation enzyme proteins are strongly deficient in liver from Zellweger patients,10-12 which explains the impairment in peroxisomal very long chain fatty acid β-oxidation8,13-16 leading to elevated very long chain fatty acid levels in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Cooper and H. Beevers, J. Biol. Chem. 244:3514-21 (1969).

    Google Scholar 

  2. P.B. Lazarow and C. DeDuve, Proc. Natl. Acad. Sci. USA 73:2043-6 (1976).

    Google Scholar 

  3. G.P. Mannaerts and L.J. de Beer, in: Short-Term Regulation of Liver Metabolism (L. Hue and G. Van de Werve, eds.),pp. 273-90, Elsevier, Amsterdam (1981).

    Google Scholar 

  4. P.B. Lazarow, in: Metabolic Compartmentation (H. Sies, ed.), pp. 317-29, Academic Press, New York (1982).

    Google Scholar 

  5. J. Bremer and H. Osmundsen, in: Fatty Acid Metabolism and Its Regulation (S. Numa, ed.), pp. 113-54, Elsevier, Amsterdam (1984).

    Google Scholar 

  6. H. Osmundsen, M.S. Thomassen, J.K. Hiltunen and R.K. Berge, in: Peroxisomes in Biology and Medicine (H.D. Fahimi and H. Sies, eds.), pp. 152-65, Springer-Verlag, Berlin/Heidelberg (1987).

    Google Scholar 

  7. T. Hashimoto, in: Peroxisomes in Biology and Medicine (H.D. Fahimi and H. Sies, edsTT, pp. 97-104, Springer-Verlag, Berlin/Heidelberg (1987).

    Google Scholar 

  8. I. Singh, A.B. Moser, S. Goldfischer and H.W. Moser, Proc. Natl. Acad. Sci. USA 81:4203–7 (1984)

    Google Scholar 

  9. S. Goldfischer, C.L. Moore, A.B. Johnson, A.J. Spiro, M.P. Valsamis, H.K. Wisniewski, R.H. Ritch, W.T. Norton, I. Rapin and L.M. Gartner, Science 227:67–70(1973).

    Google Scholar 

  10. J.M. Tager, W.A. Ten Harmsen van de Beek, R.J.A. Wanders, T. Hashimoto, H.S.A. Heymans, H. van den Bosch, R.B.H. Schutgens and A.W. Schram, Biochem. Biophys. Res. Commun. 126:1269-75

    Google Scholar 

  11. P.B. Lazarow, V. Black, H. Shio, Y. Fujiki, A.K. Hajra, N.S. Datta, B.S. Bangaru and J. Dancis, Pediatr. Res. 19:1356-64 (1985).

    Google Scholar 

  12. Y. Suzuki, T. Orri, M. Mori, M. Tatibana and T. Hashimoto, Clin. Chim. Acta 156:191-6 (1986).

    Google Scholar 

  13. A.E. Moser, I. Singh, F.R. Brown III, G. Solish, R.I. Kelley, P. Benke and H.W. Moser, N. Engl. J. Med. 310:1141-6 (1984).

    Google Scholar 

  14. H. Singh and A. Poulos, Arch. Biochem. Biophys. 250:171-9 (1986).

    Google Scholar 

  15. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, J. Heikoop, R.B.H. Schutgens, A.W. Schram, J.M. Tager, H. van den Bosch, B.T. Poll-The, J.M. Saudubray,-H.W. Moser and A.B. Moser, Clin. Chim. Acta 166:255-63 (1987).

    Google Scholar 

  16. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, R.B.H. Schutgens, J. Heikoop, H. van den Bosch, A.W. Schram and J.M. Tager, J. Clin. Invest., in press (1987).

    Google Scholar 

  17. R.J.A. Wanders, M.J.A. van Wijland, C.W.T. van Roermund, R.B.H. Schutgens, H. van den Bosch, J.M. Tager, A. Nijenhuis and A. Tromp, Clin. Chim. Acta 165: 303-10 (1987).

    Google Scholar 

  18. H.W. Moser, A.B. Moser, I. Singh and B.P. O’Neill, Ann. Neurol. 16: 628–41 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. S. Goldfischer, J. Collins, I. Rapin, P. Neumann, W. Neglia, A.J. Spire T. Ishii, F. Roels, J. Vamecq and F. van Hoof, J. Pediatr. 108:25-32 (1986).

    Google Scholar 

  20. B.T. Poll-The, F. Roels, H. Ogier, J. Scotto, J. Vamecq, R.B.H. Schutgens, R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, A.W. Schram, J.M. Tager and J.M. Saudubray, Am. J. Hum. Gen., in press (1987).

    Google Scholar 

  21. A.W. Schram, S. Goldfischer, C.W.T. van Roermund, E.M. Brouwer-Kelder, J. Collins, T. Hashimoto, H.S.A. Heymans, H. van den Bosch, R.B.H. Schutgens, J.M. Tager and R.J.A. Wanders, Proc. Natl. Acad. Sci. USA 8 2494-6 (1987).

    Google Scholar 

  22. M. Hashmi, W. Stanley and I. Singh, FEBS Lett. 196:247–50 (1986).

    Article  PubMed  Google Scholar 

  23. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, R.B.H. Schutgens, A.W. Schram, H. van den Bosch and J.M. Tager, Biochim. Biophys. Acta 919:21-5 (1987).

    Google Scholar 

  24. I. Singh and Y. Kishimoto, J. Lipid Res. 24:662–5 (1983).

    PubMed  CAS  Google Scholar 

  25. G.P. Mannaerts, L.J. DeBeer, J. Thomas and P.J. De Schepper, J. Biol. Chem. 254:4585–95 (1979).

    PubMed  CAS  Google Scholar 

  26. R. Wattiaux, S. Wattiaux-de Coninck, M.F. Ronveau-Dupan and F. Dubois, J. Cell Biol. 78:349–68 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. A. Bhusnan, R.P. Singh and I. Singh, Arch. Biochem. Biophys. 246:374–8((1986).

    Google Scholar 

  28. K. Nagamatsu, S. Soeda and Y. Kishimoto, Biochim. Biophys. Acta 836:80-(1985).

    Google Scholar 

  29. K. Nagamatsu, S. Soeda and Y. Kishimoto, Lipids 21:328-32 (1986).

    Google Scholar 

  30. W.B. Rizzo, J. Avigon, J. Chemke and J.D. Schulman, Neurology 34:163-9 (1984).

    Google Scholar 

  31. S. Tsuji, T. Sano-Kawamura, T. Ariga and T. Miyatake, J. Neurol. Sci. 71:359–67 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. R. Jaffe, P. Crumsine, Y. Hashida and H.W. Moser, Am. J. Pathol. 108: 100-11 (1982).

    Google Scholar 

  33. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, A. Nijenhuis, A. Tromp, R.B.H. Schutgens, E.M. Brouwer-Kelder, A.W. Schram, J.M. Tager, H. van den Bosch and C. Schalkwijk, Clin. Chim. Acta 165:321-9 (1987).

    Google Scholar 

  34. W.W. Chen, P.A. Watkins, T. Osumi, T. Hashimoto and H.W. Moser, Proc. Natl. Acad. Sci. USA 84:1425–8 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. S. Goldfischer, J. Collins, I. Rapin, B. Coltoff-Schiller, C.H. Chang, M. Nigro, V.H. Black, N.B. Javitt, H.W. Moser and P.B. Lazarow, Science 227:67-70 (1985).

    Google Scholar 

  36. R.J.A. Wanders, C.W.T. van Roermund, M.J.A. van Wijland, J. Heikoop, A. van den Put, P. Bentlage, E. Meijboom, J.M. Tager, A.W. Schram, H. van den Bosch and R.B.H. Schutgens, J. Inher. Metab. Dis, in press (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Wanders, R.J.A. et al. (1988). Identification of the Enzymic Defect in X-Linked Adrenoleukodystrophy: Oxidation of Very Long Chain Fatty Acids is Deficient Due to an Impaired Ability of Peroxisomes to Activate Very Long Chain Fatty Acids. In: Salvayre, R., Douste-Blazy, L., Gatt, S. (eds) Lipid Storage Disorders. NATO ASI Series, vol 150. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1029-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1029-7_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8300-3

  • Online ISBN: 978-1-4613-1029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics