Heterogeneity of Beta-Oxidation Enzyme Defects in Peroxisomal Diseases

  • Winston W. Chen
  • Gerald Hoefler
  • Paul A. Watkins
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 150)

Abstract

Peroxisomes are spherical or ovoid organelles (diameter, 0.1–1.5 um) limited by a single membrane that are ubiquitious in mammalian cells (1,2). These organelles participate in a number of metabolic cellular processes since multiple biochemical defects such as impaired oxidation of very long chain fatty acids (VLCFA) (3), phytanic acid (4), and pipecolic acid (5), as well as impaired synthesis of plasmalogens (6) and bile acids (7) are observed when peroxisomes are absent or reduced in number (the Zellweger cerebrohepatorenal syndrome). The Zellweger syndrome is usually fatal within the first year of life (8), suggesting that peroxisomes play a vital role in normal cellular metabolism.

Keywords

Sedimentation Electrophoresis Polyacrylamide Cytosol Catalase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Duve, C., Baudhuin, P. (1966) Pysiol. Rev. 46 323–357.Google Scholar
  2. 2.
    Lazarow, P. B. de Duve, C. (1976) Proc. Natl. Acad. Sci. USA 73, 2043-2046.Google Scholar
  3. 3.
    Singh, I., Moser, A. B., Goldfischer, S., Moser, H. W. (1984) Proc. Natl. Acad. Sci. USA 81, 4203–4207.PubMedCrossRefGoogle Scholar
  4. 4.
    Poulos, A., Sharp, P., Whiting, M. (1984) Clin. Gene. 26, 579-586. 5. Danks, D. M., Tippett, P., Adams, C., Campbell, P. (1975) J. Pediatr. 86, 382–387.Google Scholar
  5. 6.
    Datta, N. S., Wilson, G. N.,Hajra, A. K. (1984) New England J. Med. 311, 1080–1083.CrossRefGoogle Scholar
  6. 7.
    Kase, B. F., Pedersen, J. I., Strandvik, B., Bjorkhem, I., (1985) J. Clin. Invest. 76, 2393–2402.PubMedCrossRefGoogle Scholar
  7. 8.
    Goldfischer, S., Moore, C. L., Johnson, A. B., Spiro, A. J., Valsamis, M. P., Wisniewski, H. K., Ritch, R. K., Norton, W. T., Rapin, I., Gartner, L. M., (1973) Science 182, 62-64.Google Scholar
  8. 9.
    Tager, J. M., Van Der Beek, W. A., Wanders, R. J., Hashimoto, T., Heymans, H. S., Van Den Bosch, H., Schutgens, R. B., Schram, A. W. (1985) Biochem. Biophys. Res. Commun. 126, 1269-1275.Google Scholar
  9. 10.
    Chen, W. W., Watkins, P. A., Osumi, T., Hashimoto. T., Moser, H.W. (1987) Proc. Natl. Acad. Sci. USA 84, 1425–1428.PubMedCrossRefGoogle Scholar
  10. 11.
    Singh, I., Moser, H. W., Moser, A. B., Kishimoto, Y. (1981) Biochem. Biophys. Res. Commun. 102, 1223–1229.PubMedCrossRefGoogle Scholar
  11. 12.
    Roscher, A., Molzer, B., Berheimer, H., Stockler, S., Mutz, I,., Paltauf, F. (1984) Pediatr. Res. 19, 930–933.CrossRefGoogle Scholar
  12. 13.
    Wanders, R. J. A., Kos, M., Roest, B., Meijer, A. J., Schrakamp, G., Heymans, H. S., Tegelaers, W. H., Van Den Bosch, H., Schutgens, R. B., Tager, J. M., (1984) Biochem. Biophys. Res. Commun. 123, 1054-1061.Google Scholar
  13. 14.
    Thomas, P. S. (1980) Proc. Natl. Acad. Sci. USA 77, 5201–5205.PubMedCrossRefGoogle Scholar
  14. 15.
    Suzuki, Y., Orii, T., Hashimoto, T. (1986) J. Inher. Metab. Dis. 9, 292–296.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Winston W. Chen
    • 1
  • Gerald Hoefler
    • 1
  • Paul A. Watkins
    • 1
  1. 1.John F. Kennedy Institute, Departments of Neurology and Biological ChemistryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations