Advertisement

Molecular Genetics of β-N-Acetylhexosaminidase α Subunit Mutations

  • Kousaku Ohno
  • Michele Muscillo
  • Takeshi Nakano
  • Kunihiko Suzuki
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 150)

Abstract

Tay-Sachs disease is the prototype of human sphingolipidoses. Since the description of the disease a century ago, many other disorders have been added to the list. Generally, investigations of genetic sphingolipidoses have progressed through several distinct stages; clinicopathological descriptions, identification of the chemical nature of affected lipids, identification of the underlying enzymatic defects, and most recently characterization of the diseases on the level of nucleic acids. In Tay- Sachs disease, the second stage arrived when Klenk discovered the new class of lipids, gangliosides, in brains of patients [1], although the exact structure of GM2-ganglioside (Tay-Sachs ganglioside) was not established for thirty more years [2,3]. The primary genetic defect was traced to deficient activity of N-acetyl β-hexosaminidase A (hexosaminidase A) in 1969 [4,5]. Studies on the subunit structure of hexosaminidase A and B clarified that hexosaminidase A is a heterodimer consisting of the a and β subunits and that the genetic defect in Tay-Sachs disease resides in the a subunit. Detailed enzymological studies began to show heterogenous nature of the a mutation. For example, a patient with a juvenile form of the disease was shown to have a partial defect of hexosaminidase A with a disproportionate loss of activity toward the natural substrate, GM2-ganglioside [6-8]. By that time, both hexosaminidase isozymes were purified and immunological investigations with antibodies further indicated complex heterogeneity of the so-called Tay-Sachs disease. The classical Tay-Sachs disease prevalent among the Ashkenazi Jewish population and some other severe infantile forms were shown to lack immunologically reactive hexosaminidase a protein, while some variant forms proved to produce immunoloigically detectable but catalytically defective enzyme protein [9]. It became clear that these phenotypic complexities can only be understood definitively when abnormalities in the hexosaminidase a subunit are clarified on the level of the nucleic acids.

Keywords

Sandhoff Disease Ashkenazi Jewish Population Acta Neuropath Sachs Disease Putative Glycosylation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Klenk: Beiträge zur Chemie der Lipoidosen. 3. Niemann-Picksche Krankheit und amaurotische Idiotie. Z. Physiol. Chem. 262:128 (1939).Google Scholar
  2. 2.
    L. Svennerholm: The chemical structure of normal human brain and Tay-Sachs gangliosides. Biochem. Biophys. Res. Commun. 9:436 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Ledeen and K. Salsman: Structure of the Tay-Sachs ganglioside. Biochemistry 4:2225 (1965).CrossRefGoogle Scholar
  4. 4.
    K. Sandhoff: Variation of β-D-N-acetylhexosaminidase pattern in Tay-Sachs disease. FEBS Lett. 4:351 (1969).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Okada and J. S. O’Brien: Tay-Sachs disease: Generalized absence of beta-D-N-acetylhexosaminidase component. Science 165:698 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Suzuki, K. Suzuki, I. Rapin, Y. Suzuki and N. Ishii: Juvenile GM2 gangliosidosis. Clinical variant of Tay-Sachs disease or a new disease. Neurology 20:190 (1970).PubMedGoogle Scholar
  7. 7.
    Y. Suzuki and K. Suzuki: Partial deficiency of hexosaminidase componen in a juvenile GM2 gangliosidosis. Neurology 20:848 (1970).PubMedGoogle Scholar
  8. 8.
    J. Zerfowski and K. Sandhoff: Juvenile GM2-Gangliosidose mit verändert Substratspezifität der Hexosaminidase A. Acta Neuropath. 27:225 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Sandhoff, E. Conzelmann, E. F. Neufeld, M. M. Kaback and K. Suzuki: The GM2 gangliosidosis. In The Metabolic Basis of Inherited Disease 6th edition, edited by C. R. Scriver, A. L. Beaudet, W. S. Sly and E Valle, McGraw-Hill, New York, in press.Google Scholar
  10. 10.
    R. Myerowitz and R. L. Proia: cDNA clone for the a-chain of human hexosaminidase: Deficiency of a-chain mRNA in Tay-Sachs fibroblasts. Proc. Natl. Acad. Sci., U.S.A. 81:5394 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Myerowitz, R. Piekarz, E. F. Neufeld, T. B. Shows and K. Suzuki: Human hexosaminidase a chain: Coding sequence and homology with the chain. Proc. Natl. Acad. Sci., U.S.A. 82:7830 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    R. G. Korneluk, D. J. Mahuran, K. Neote, M. H. Klavins, B. F. O’Dowd, Tropack, H. F. Willard, M.-J. Anderson, J. A. Lowden and R. A. Grave Isolation of cDNA clones coding for the a subunit of human β-hexosaminidase. Extensive homology between the a-and β-subunits an studies on Tay-Sachs disease. J. Biol. Chem. 261:8407 (1986).PubMedGoogle Scholar
  13. 13.
    R. L. Proia and E. Soravia: Organization of the gene encoding the huma β-hexosaminidase a-chain. J. Biol. Chem. 262:5677 (1987).Google Scholar
  14. 14.
    B. F. O’Dowd, F. Quan, H. F. Willard, A.-M. Lamhonwah, R. G. Korneluk, J. A. Lowden, R. A. Gravel and D. J. Mahuran: Isolation of cDNA clon coding for the β subunit of human β-hexosaminidase. Proc. Natl. Acad. Sci., U.S.A. 82:1184 (1985).Google Scholar
  15. 15.
    R. L. Proia: personal communication.Google Scholar
  16. 16.
    K. Ohno and K. Suzuki: The mutation in GM2 gangliosidosis B1 variant, submitted for publication.Google Scholar
  17. 17.
    B. F. O’Dowd, M. H. Klavins, H. F. Willard, R. Gravel, J. A. Lowden an D. J. Mahuran: Molecular heterogeneity in the infantile and juvenile forms of Sandhoff disease (O-variant GM2 gangliosidosis). J. Biol. Chem. 261:12680 (1986).Google Scholar
  18. 18.
    R. Myerowitz and N. D. Hogikyan: Different mutations in Ashkenazi Jewi and non-Jewish French Canadians with Tay-Sachs disease. Science 232:1646 (1986).Google Scholar
  19. 19.
    J. E. Goldman, T. Yamanaka, I. Rapin, M. Adachi, K. Suzuki and K. Suzuki: The AB variant of GM2-gangliosidosis. Clinical, biochemical and pathological studies of two patients. Acta Neuropath. 52:189 (1980).Google Scholar
  20. 20.
    S. C. Li, Y. Hirabayashi and Y.-T. Li: A new variant of type-AB GM2-gangliosidosis. Biochem. Biophys. Res. Commun. 101:479 (1981).Google Scholar
  21. 21.
    H.-J. Kytzia, U. Hinrichs, I. Maire, K. Suzuki and K. Sandhoff: Variant of GM2 gangliosidosis with hexosaminidase A having a severely changed substrate specificity. EMBQ J. 2:1201 (1985).Google Scholar
  22. 22.
    H. Kresse, W. Fuchs, J. Glössel, D. Holtfrerich and W. Gilberg: Liberation of N-acetylglucosamine-6-sulfate by human β-Nacetylhexosaminidase A. J. Biol. Chem. 256:12926 (1981).Google Scholar
  23. 23.
    S. Sonderfeld, S. Brendler, K. Sandhoff, H. Galjaard and A. T. Hoogeveen: Genetic complementation in somatic cell hybrids of four variants of infantile GM2 gangliosidosis. Human Genet. 71:196 (1985).Google Scholar
  24. 24.
    R. L. Proia and E. F. Neufeld: Synthesis of β-hexosaminidase in cellfree translation and in intact fibroblasts: An insoluble precursor a chain in rare form of Tay-Sachs disease. Proc. Natl. Acad. Sci., U.S.A. 79:6360 (1982).Google Scholar
  25. 25.
    H. Aviv and P. Leder: Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci., U.S.A. 69:1408 (1972).PubMedCrossRefGoogle Scholar
  26. 26.
    D. A. Goldberg: Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc. Natl. Acad. Sci., U.S.A. 77:5794 (1980).Google Scholar
  27. 27.
    P. W. J. Rigby, M. Dickmann, C. Rhodes and P. Berg: Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Molec. Biol. 113:237 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    U. Gubler and B. J. Hoffman: A simple and very efficient method for generating cDNA libraries. Gene 25:263 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    F. Sanger, S. Nicklen and A. R. Coulson: DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci., U.S.A. 74:5463 (1977).Google Scholar
  30. 30.
    M. D. Biggin, J. J. Gibson and G. F. Hong: Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci., U.S.A. 80:3963 (1983).Google Scholar
  31. 31.
    S. D. Black and J. C. Glorioso: MSEQ: A microcomputer-based approach to the analysis, display, and prediction of protein structure. BioTechniques 4:448 (1986).Google Scholar
  32. 32.
    H.-J. Kytzia and K. Sandhoff: Evidence for two different active sites on human β-hexosaminidase A. Interaction of GM2 activator protein with β-hexosaminidase A. J. Biol. Chem. 260:7568 (1985).Google Scholar
  33. 33.
    K. Ohno and K. Suzuki: Molecular genetic heterogeneity of β-hexosaminidase a chain defect in Hispanic, Black and Japanese patients. Abstract for the 38th Annual meeting of the Am. Soc. Human Genet., San Diego, 1987.Google Scholar
  34. 34.
    G. Zokaeem, J. Bayleran, P. Kaplan, P. Hechtman and E. F. Neufeld: A shortened β-hexosaminidase a chain in an Italian patient with infantile Tay-Sachs disease. Am. J. Human Genet. 40:537 (1987)Google Scholar
  35. 35.
    I. Rapin, K. Suzuki, K. Suzuki and M. P. Valsamis: Adult (chronic) GM2 gangliosidosis: Atypical spinocerebellar degeneration in a Jewish sibship. Arch. Neurol. 33:120 (1976).Google Scholar
  36. 36.
    C. Budde-Steffen, M. Steffen, D. A. Siegel and K. Suzuki: Presence of β-hexosaminidase a chain mRNA in two different variants of GM2 gangliosidosis, submitted for publication.Google Scholar
  37. 37.
    A. d’Azzo, R. L. Proia, E. H. Kolodny, M. M. Kaback and E. F. Neufeld: Faulty association of a-and β-subunits in some forms of β-hexosaminidase deficiency, J. Biol. Chem. 259:11070 (1984).Google Scholar
  38. 38.
    A. Frisch, D. Baram and R. Navon: Hexosaminidase A deficient adults: Presence of a chain precursor in cultured skin fibroblasts. Biochem. Biophys. Res. Commun. 119: 101 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Kousaku Ohno
    • 1
  • Michele Muscillo
    • 1
  • Takeshi Nakano
    • 1
  • Kunihiko Suzuki
    • 1
  1. 1.Biological Sciences Research Center Departments of Neurology and PsychiatryUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations