Skip to main content

Human α-Galactosidase: Characterization and Eukaryotic Expression of the Full-Length cDNA and Structural Organization of the Gene

  • Conference paper
Lipid Storage Disorders

Part of the book series: NATO ASI Series ((NSSA,volume 150))

Summary

Human α-galactosidase (EC 3.2.1.22) is a lysosomal hydrolase encoded by a single gene located in the chromosomal region Xq21.33-q22. The deficient activity of this enzyme results in Fabry disease, an X-linked recessive disorder which leads to premature death in affected males. For studies of the structure and function of α-galactosidase and for characterization of the genetic lesions in families with Fabry disease, the full-length cDNA was isolated, sequenced and used to obtain the human chromosomal gene. The 1393 bp full-length cDNA had a 60 nt 5’ untranslated region and encoded a precursor peptide of 429 amino acids including a signal peptide of 31 residues. The functional integrity of this cDNA was demonstrated by transient expression in COS-1 cells. The entire ~12 kb chromosomal gene, including ~9 and ~11 kb of 5’ and 3’ flanking sequence, was isolated. The gene had seven exons whose sequences were identical to those in the full-length cDNA. The 5’ flanking region of this housekeeping gene contained Spl and CCAAT box promoter elements as well as sequences corresponding to the AP-1, “OCTA” and “core” enhancer elements. Four direct repeats of the “chorion box” enhancer were preceded by an upstream “HTF” island. All intron-exon splice junctions conformed to the GT/AG consensus sequence. The novel lack of a 3’ untranslated sequence in the α-galactosidase cDNA was confirmed by sequencing the genomic 3’ region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. J. Desnick and C. C. Sweeley, Fabry disease: α-galactosidase A deficiency, in: “The Metabolic Basis of Inherited Disease,.” J. B. Stanbury, J. B. Wyngaarden, D. S, Fredrickson, J. L. Goldstein, and M. S. Brown, eds., McGraw-Hill, New York, 5th ed., (1982).

    Google Scholar 

  2. D. F. Bishop and R. J. Desnick, Affinity purification of α-galactosidase A from human spleen, placenta and plasma with elimination of pyrogen contamination, J. Biol. Chem. 256:1307 (1982).

    Google Scholar 

  3. J. W. Mayes and E. Beutler, Alpha-galactosidase A from human placenta. Stability and subunit size, Biochim. Biophys. Acta 484:408 (1977).

    PubMed  CAS  Google Scholar 

  4. J. W. Kusiak, J. M. Quirk, and R. O. Brady, Purification and properties of the two major isozymes of α-galactosidase from human placenta, J. Biol. Chem. 253:184 (1978).

    PubMed  CAS  Google Scholar 

  5. K. J. Dean and C. C. Sweeley, Studies on human liver α-galactosidase, J. Biol. Chem. 254:9994(1979).

    PubMed  CAS  Google Scholar 

  6. E. Beutler and W. Kuhl, Purification and properties of human α-galactosidase, J. Biol. Chem. 247:7195 (1972).

    PubMed  CAS  Google Scholar 

  7. P. Lemansky, D. F. Bishop, R. J. Desnick, A. Hasilik, and K von Figura, Synthesis and processing of α-galactosidase A in human fibroblasts: Evidence for different mutations in Fabry disease, J. Biol. Chem. 262:2062 (1987).

    Google Scholar 

  8. H. S. Bernstein, D. F. Bishop, K H. Astrin, R. Kornreich and R. J. Desnick, Fabry disease: Analysis of mutations in the human α-galactosidase gene, Am. J. Hum. Genet. 39A188 (1986).

    Google Scholar 

  9. D. H. Calhoun, D. F. Bishop, H. S. Bernstein, M. Quinn, P. Hantzopoulos and R. J. Desnick, Isolation of a cDNA clone encoding human α-galactosidase A, Proc. Natl. Acad. Sci. USA 82:7364 (1985)

    Google Scholar 

  10. D. F. Bishop, D. H. Calhoun, H. S. Bernstein, P. Hantzopoulos, M. Quinn and R. J. Desnick, Human a-galactosidase A: Nucleotide sequence of a cDNA clone encoding the mature enzyme, Proc. Natl. Acad. Sci. USA 83:4859 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. R. J. Desnick, K. H. Astrin, H. S. Bernstein, V. R. Potluri and D. F. Bishop, Molecular studies of Fabiy disease, Clin Res. 34:717A (1986).

    Google Scholar 

  12. D. F. Bishop, R. Kornreich, and R. J. Desnick, Structural organization of the human agalactosidase A gene: Further evidence for the absence of a 3’ untranslated region, Proc. Natl Acad. Sci. USA 85:3903 (1988).

    Google Scholar 

  13. H. Okayama and P. Berg, A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells, Mol. Cell Biol 3:280 (1983).

    Google Scholar 

  14. W. I. Wood, D. J. Capon, C. C. Simonsen, D. L. Eaton, J. Gitschier, B. Keyt, P. H. See burg, D. H. Smith, P. Hollingshead, K. L. Wion, E. Delwart, G. D. Tuddenham, G. A. Vehar and R. M. Lawn, Expression of active human factor VIII from recombinant DNA clones, Nature 312:330 (1984).

    Google Scholar 

  15. H. Okayama and P. Berg, High-efficiency cloning of full-length cDNA, Mol. Cell Biol. 2:161 (1982).

    Google Scholar 

  16. D. Han ah an and M. Meselson, Plasmid screening at high colony density, Methods Enzymol. 100:333 (1983).

    Google Scholar 

  17. W. D. Benton and R. W. Davis, Screening Xgt recombinant clones by hybridization in situf Science 196:180 (1977).

    Google Scholar 

  18. J. Messing, New M13 vectors for cloning, Methods Enzymol 101:20 (1983).

    Google Scholar 

  19. F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74:5463 (1977).

    Article  PubMed  CAS  Google Scholar 

  20. G. G. Wong, J. S. Witek, P. A. Temple, K. M. Wilkens, A. C. Leary, D. P. Luxenberg, S. S. Jones, E. L. Brown, R. M. Kay, E. C. Orr, C. Shoemaker, D. W. Golde, R. J. Kaufman, R. H. Hewick, E. A. Wang, and S. C. Clark, Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins, Science 228:810 (1985).

    Google Scholar 

  21. S. Kaway and M. Nishizawa, New procedure for DNA transfection with polycation and dimethyl sulfoxide, Mol Cell Biol 4:1172 (1984).

    Google Scholar 

  22. T. L. Morgan, V. M. Maher, and J. J. McCormick, Optimal parameters for the polybreneinduced DNA transfection of diploid human fibroblasts, In Vitro Cell. Devel Biol. 22:317 (1986).

    Google Scholar 

  23. D. F. Bishop, K. J. Dean, C. C. Sweeley, and R. J. Desnick, Purification and characterization of human a-galactosidase isozymes: Comparison of tissue and plasma forms and evaluation of purification methods, it:“Enzyme Therapy in Genetic Diseases: 2,” R. J. Desnick, ed., Alan R. Liss, Inc., New York p. 17 (1980).

    Google Scholar 

  24. P. Bohlen, S. Stein, W. Dairman, and S. Udenfriend, Fluorometric assay of proteins in the nanogram range, Arch. Biochem. Biophys. 155:213 (1973).

    Google Scholar 

  25. D. F. Bishop, D. E. Wampler, J. T. Sgouris, R. J. Bonefeld, D. K. Anderson, M. C. Hawley, and C. C. Sweeley, Pilot scale purification of a-galactosidase A from Cohn fraction IV-1 of human plasma, Biochim. Biophys. Acta 524:109 (1978).

    PubMed  CAS  Google Scholar 

  26. J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald, and W. J. Rutter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18:5294 (1974).

    Google Scholar 

  27. T. Maniatis, E. F. Fritsch, and J. Sambrook, “Molecular Cloning: A Laboratory Manual” Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1982).

    Google Scholar 

  28. F. R. Blattner, B. G. Williams, A. E. Blechl, K. Denniston-Thompson, H. E. Faber, L. A. Furlong, D. J. Grunwald, D. O. Kiefer, D. D. Moore, E. L. Sheldon, and O. Smithies, Charon phages: Safer derivatives of bacteriophage lambda for DNA cloning, Science 196:161 (1977).

    Google Scholar 

  29. E. Southern, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol Biol 9:503 (1975).

    Google Scholar 

  30. M. Kozak, Compilation and analysis of sequences upstream from the translation start site in eukaryotic mRNA’s, Nucleic Acids Res. 12:857 (1984).

    Google Scholar 

  31. D. Perlman and H. O. Halvorson, A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides, J.Mol. Biol 167:391 (1983).

    Google Scholar 

  32. M. E. E. Watson, Compilation of published signal sequences, Nucleic Acids Res. 12:5141 (1984).

    Google Scholar 

  33. G. von Heijne, A new method for predicting signal sequence cleavage sites, Nucleic Acids Res. 14:4683 (1986).

    Google Scholar 

  34. S. Tsuji, B. M. Martin, D. C. Kaslow, B. R. Migeon, P. V. Choudary, B. K. Stubblefield, J A. Mayor, G. J. Murray, J. A. Barranger, and E. I. Ginns, Signal sequence and DNA mediated expression of human lysosomal a-galactosidase A, Eur. J. Biochem. 165:27 (1987).

    Article  Google Scholar 

  35. J. Sorge, C. West, B. Westwood, and E. Beutler, Molecular cloning and nucleotide sequence of human glucocerebrosidase cDNA, Proc. Natl Acad. Sci. USA 82:7289 (1985).

    Article  PubMed  CAS  Google Scholar 

  36. P. L. Faust, S. Kornfeld, and J. M. Chirgwin, Cloning and sequence analysis of cDNA for human cathepsin D, Proc. Natl Acad. Sci. USA 82:4910 (1985).

    Google Scholar 

  37. R. Myerowitz, R. Piekarz, E. F. Neufeld, T. B. Shows, and K Suzuki, Human β-Hex osaminidase a-chain: Coding sequence and homology with the β-chain, Proc. Natl. Acad, Sci. USA 82:7830 (1985).

    Google Scholar 

  38. M. Luskey and M. Batchan, Inhibition of SV40 replication in simian cells by specific pBR322 DNA sequences, Nature 293:79 (1981).

    Google Scholar 

  39. J. Logan and T. Shenk, Adenovirus tripartite leader sequence enhances translation on mRNAs late after infection, Proc. Natl. Acad. Sci. USA 81:3655 (1984).

    Article  PubMed  CAS  Google Scholar 

  40. R. J. Schneider, C. Weinberger and T. Shenk, Adenovirus VAI RNA facilitates the initiation of translation in virus-infected cells, Cell 37:291 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. R. Breathnach and P. Chambon, Organization and expression of eukaryotic split genes coding for proteins, Ann. Rev. Biochem. 50:349 (1981).

    Google Scholar 

  42. S. M. Mount, A catalogue of splice junction sequences, Nucleic Acids Res. 10:459 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. B. Ruskin, A. R. Krainer, T. Maniatis, and M. R. Green, Excision of an intact intron as novel lariat structure during pre-mRNA splicing in vitro, Cell 38:317 (1984).

    Google Scholar 

  44. E. B. Keller and W. A. Noon, Intron splicing: A conserved internal signal in introns oi Drosophila pre-mRNAf Nucleic Acids Res. 13:4971 (1985).

    Google Scholar 

  45. R. L. Proia and E. Soravia, Organization of the gene encoding the human β-hex osaminidase a-chain, J. Biol Chem. 262:5677 (1987).

    PubMed  CAS  Google Scholar 

  46. R. L. Proia, Gene encoding the human β-hexosaminidase β-chain: Extensive homology o intron placement in the a-and β-chain genes, Proc. Natl. Acad. Sci. USA 85:1833 (1988).

    Article  Google Scholar 

  47. W. Gilbert, Genes-in-pieces revisited, Science 228:823 (1985).

    Google Scholar 

  48. T. Maniatis, S. Goodbourn, and J. A. Fischer, Regulation of inducible and tissue-specific gene expression, Science 236:1237 (1987).

    Google Scholar 

  49. J. Cordon, B. Wasylyk, A. Buchwalder, P. Sassone-Corsi, C. Kedinger, and P. Chambon Promoter sequences of eukaryotic protein-coding genes, Science 209:1406 (1980).

    Article  Google Scholar 

  50. C. Benoist and P. Chambon, In vivo sequence requirements of the SV40 early promote] region, Nature 290:304 (1981).

    Google Scholar 

  51. A.P. Bird, CpG-rich islands and the function of DNA methylation, Nature 321:209 (1986).

    Article  PubMed  CAS  Google Scholar 

  52. S. Lindsay and A. P. Bird, Use of restriction enzymes to detect potential gene sequences in mammalian DNA, Nature 327:336 (1987).

    Google Scholar 

  53. D. Valerio, M. G. C. Duyvesteyn, B. M. M. Bekker, G. Weeda, Th. M. Berkvens, L. var der Voorn, H. van Ormondt, and A. J. van der Eb, Adenosine deaminase: Characterizatior and expression of a gene with a remarkable promoter, EMBO 4:437 (1985).

    Google Scholar 

  54. G. A. Reynolds, S. K Basu, T. F. Osborne, D. J. Chin, G. Gil, J. L. Goldstein, and K L Luskey, HMG-CoA reductase: A negatively regulated gene with unusual promoter and 5 untranslated regions, Cell 38:275 (1984).

    Article  PubMed  CAS  Google Scholar 

  55. D. W. Melton, D. S. Konecki, J. Brennand, and T. C. Caskey, Structure, expression anc mutation of the hypoxanthine phosphoribosyltransferase gene, Proc. Natl. Acad, Sci. USA 81:2147 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Bishop, D.F., Kornreich, R., Eng, C.M., Ioannou, Y.A., Fitzmaurice, T.F., Desnick, R.J. (1988). Human α-Galactosidase: Characterization and Eukaryotic Expression of the Full-Length cDNA and Structural Organization of the Gene. In: Salvayre, R., Douste-Blazy, L., Gatt, S. (eds) Lipid Storage Disorders. NATO ASI Series, vol 150. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1029-7_102

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1029-7_102

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8300-3

  • Online ISBN: 978-1-4613-1029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics