Interpretation of Recent On-State and Previous Negative Capacitance Data in Threshold Chalcogenide Amorphous Switch

  • G. C. Vezzoli
  • M. A. Shoga
Part of the Institute of Amorphous Studies Series book series (IASS)


Recent measurements studying the on-regime of the transient on-state characteristics (TONC) of an amorphous semiconductor Ovonic threshold switch, employing precisely balanced circuitry and isolated device voltage determination, have shown that the blocked on-state develops after an interruption subholding-voltage-time of about 100 ns. If the voltage interruption time below the holding voltage (Vh) is no greater than approximately 65–95 ns, the blocked on-state will not develop and the I-V curve will display a metal-like behavior. This is in agreement with a recombination single injection model for threshold switching in amorphous semiconductors because during the interrupt ion-time recombination takes place near the anode until a recombination front is established. In both the slow and fast relaxation regimes the general I-V curves thus derived are normally asymmetric about the origin, the former (slow) because of the structure of the interrogating wave form, the latter (fast) because of the lag in the response of current to voltage.The present paper gives a conceptual band structure model to interpret the new I-V data based on a shallow trapping band, using a recombinative single injection mechanism to describe threshold switching. This model is also invoked to explain the previously-measured negative capacitance in this material in terms of carrier separation characteristic of a relaxation semiconductor undergoing threshold switching and involving a recombination front.


Threshold Switching Trap Carrier Negative Capacitance Device Voltage Transitional Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    R. W. Pryor and H. K. Henisch, J. Non. Cryst. Solids 7, 1181 (1972).CrossRefGoogle Scholar
  2. 2).
    H. E. Henisch, R. W. Pryor, and G. J. Vendura, J. Non-Cryst. Solids 8–10, 415 (1972).ADSCrossRefGoogle Scholar
  3. 3).
    G. C. Vezzoli and L. W. Doremus, J. Appl. Phys. 44, 3245 (1973) •Google Scholar
  4. 4).
    G. C. Vezzoli, Phys. Rev. B 22(4), 2025 (1980) •ADSCrossRefGoogle Scholar
  5. 5).
    G. C. Vezzoli, Phys. Rev. B 22(4), 2025 (1980)ADSCrossRefGoogle Scholar
  6. 6).
    G. C. Vezzoli, Phys. Rev. June 1987.Google Scholar
  7. 7).
    G. C. Vezzoli, L. W. Doremus, M. Shoga, B. Lalevic, and S. Levy, J.Appl. Phys.Google Scholar
  8. 8).
    P. J. Walsh and R. Vogel, Appl. Phys. Lett. 14, 216 (1969).Google Scholar
  9. 9).
    H. K. Renisch, The Pennsylvania State University, private communication.Google Scholar
  10. 10).
    W. Van Roosbroeck, J. Non-Cryst. Solids 12, 232 (1973); Phys. Rev.Lett. 28, 1120 (1972).ADSCrossRefGoogle Scholar
  11. 11).
    G. C. Vezzoli, L. W. Doremus, P. J. Walsh, P. J. Kisatsky, J. Appl.Phys. 45, 4534 (1974).ADSCrossRefGoogle Scholar
  12. 12).
    W. Van Roosbroeck, Phys. Rev. 123(2), 474 (1961).ADSzbMATHCrossRefGoogle Scholar
  13. 13).
    The charge separation is unique to a relaxation semi-conductor Such.As the Ovonic glass and GaAs, and definitely does not occur in alifetime semiconductor. Hence we do not expect negative capacitancein the latter.Google Scholar
  14. 14).
    H. K. Henisch, The Pennsylvania State University and Saeid Rahimi, Sonoma State University, private communications.Google Scholar
  15. 15).
    P. Schmidt and R Callorotti, private communication.Google Scholar
  16. 16).
    G. C. Vezzoli, L. W. Doremus, and P. J. Walsh in “Amorphous andLiquid Semiconductors, ” edited by J. Stuke and W. Brenig (Taylor andFrancis, London, 1974), Vol. I, P. 651.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • G. C. Vezzoli
    • 1
    • 2
    • 3
  • M. A. Shoga
    • 4
  1. 1.Ceramics Research DivisionU.S. Army Materials Technology LaboratoryWatertownUSA
  2. 2.Materials Science DepartmentThe Massachusetts Institute if TechnologyCambridgeUSA
  3. 3.Department of Electrical EngineeringRutgers UniversityPiscatawayUSA
  4. 4.Hughes Aircraft CompanyLos AngelesUSA

Personalised recommendations