Advertisement

Piezoresistivity in Semiconducting Ferroelectrics

  • Ahmed Amin
Part of the Institute of Amorphous Studies Series book series (IASS)

Abstract

The piezoresistive effect in semiconducting polycrystalline barium titanate and its solid solutions with lead and strontium titanate under different elastic and thermal boundary conditions will be reviewed. An account of this phenomenon based upon recent models of ferroelectricity and grain boundary potential is given. A comparison to silicon and germanium is attempted.

Keywords

Barium Titanate Barium Strontium Titanate Electric Boundary Condition Ferroelectric State Transverse Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizu, K., 1972, Electrical, mechanical, and electromechanical orders of state shifts in nonmagnetic ferroic crystals, J. Phys. Soc. Jpn., 32:1287.ADSCrossRefGoogle Scholar
  2. Aizu, K., 1973, Second order ferroic state shift, J. Phys. Soc. Jpn., 34: 121.ADSCrossRefGoogle Scholar
  3. Amin, A., and Newnham, R. E., 1980, Tertiary ferroics, Phys. Stat. Sol(a)., 61:215.ADSCrossRefGoogle Scholar
  4. Amin, A., and Shukla, V., 1985, Effects of mechanical processing on semiconducting properties of barium titanate, J. Am. Ceram. Soc., 68 (7):C-167.CrossRefGoogle Scholar
  5. Amin, A., Spears, M., and Kulwicki, B. M., 1983, Reaction of anatase and rutile with barium carbonate, J. Am. Ceram. Sos., 66(10):733.CrossRefGoogle Scholar
  6. Amin, A., 1986, Piezoresistivity in semiconducting perovskites, TI Enqr. J., 3(2):38.Google Scholar
  7. Amin, A., 1987, Computer-controlled system for investigating the hydrostatic piezoresistive effect as a function of temperature, Rev. Sci. Instrum., 58(8):1514.ADSCrossRefGoogle Scholar
  8. Amin, A., and Cross, L. E., 1985, Effect of electric boundary conditions on morphotropic Pb(Zr,Ti)03; piezoelectrics, Jpn. J. Appl. Phys., Suppl. 24–2: 229.Google Scholar
  9. Amin, A., Newnham, R.E., and Cross, L.E., 1986, Effect of elastic boundary conditions on morphotropic Pb(Zr,Ti)03 piezoelectrics, Phys. Rev. B., 34(3):1595.ADSCrossRefGoogle Scholar
  10. Bhagavantam, S., 1966, “Crystal Symmetry and Physical Properties,” Academic Press, New York.Google Scholar
  11. Buessem, W. R., Cross, L. E., and Goswami, A. K., 1966, Phenomenological theory of high permittivity in fine-grained barium titanate, J. Am. Ceram. Soc., 49(1):36.CrossRefGoogle Scholar
  12. Buessem, W.R., Cross, L.E., and Goswami, A. K., 1966, Effect of two-dimensional pressure on the permittivity of fine-and coarse-grained barium titanate, J. Am. Ceram. Soc., 49 (1): 36.CrossRefGoogle Scholar
  13. Chan, H. M., Harmer, P. M., and Smyth, M. D., 1986, Compensating defects in highly donor-doped BaTiO3. J. Am. Ceram. Soc., 69 (6): 507.CrossRefGoogle Scholar
  14. Cochran, W., 1960, Crystal stability and theory of ferroelectricity, Adv. Phys., 9: 387.ADSGoogle Scholar
  15. Daniels, K., Haerdtl, H., and Wernicke, R., (1978/1979), The PTC effect of barium titanate, Philips Tec. Rev., 38:73.ADSGoogle Scholar
  16. Devonshire, F.A., 1949, Theory of barium titanate-part I, Phil Mag., 40:1040.Google Scholar
  17. Devonshire, P. A., 1951, Theory of barium titanate-part II. Phil. Mag., 42:1065.zbMATHGoogle Scholar
  18. French, P. J. and Evans, A. G. R., 1985, Polycrystalline silicon strain sensors, Sensors and Actuators, 8: 219.CrossRefGoogle Scholar
  19. Goodman, G., 1963, Electrical conduction anomaly in samarium-doped barium titanate, J. Am. Ceram. Soc., 46 (1): 48.CrossRefGoogle Scholar
  20. Goswami, A. K., and Cross, L., E., 1968, On the pressure and temperature dependence of the dielectric properties of perovskite barium titanate, Phys. Rev., 171(2):549.ADSCrossRefGoogle Scholar
  21. Henisch, K. H., 1984, “Semiconductor Contacts,” Oxford.Google Scholar
  22. Herring, C., 1955, Transport properties of many-valley semiconductor, Bell System Tech. J., xxxiv(2): 237.Google Scholar
  23. Herring, C., and Vogt, E., 1956, Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering, Phys. Rev., 101(3): 944.ADSzbMATHCrossRefGoogle Scholar
  24. Heynecek, J., 1974, Elastoresistance of n-type silicon on sapphire, J. Appl. Phys., 54(6): 2631.ADSCrossRefGoogle Scholar
  25. Heywang, W., 1961, Barium titanate as a semiconductor with blocking layers, Solid-State Electron., 3 (1): 51.ADSCrossRefGoogle Scholar
  26. Heywang, W., 1963, Behavior of reactance of BaTiO3-cold conductors as a confirmation of the model with blocking layers, Z. Angew. Phys., 16 (1): 1.Google Scholar
  27. Heywang, W., 1964, Resistivity anomaly in doped barium titanate, J. Am. Ceram. Soc., 47 (10): 484.CrossRefGoogle Scholar
  28. Heywang, W., and Gunterdorfer, M., 1966, On the resistivity of doped BaTi03, Proc. Intern. Meeting Ferroelectricity, 2: 307.Google Scholar
  29. Heywang, W., 1971, Semiconducting barium titanate, J. Mat. Sci., 6: 1214.ADSCrossRefGoogle Scholar
  30. Igarashi, H., Michiue, M., and Okazaki, K., 1985, Jpn. J. Appl. Phys., suppl. 24–2: 305.Google Scholar
  31. Janega, L. P., 1986, Hypothesis to explain pressure effects on resistivity in semiconductive barium titanate ceramics, Solid-State Electron., 29 (1): 59.ADSCrossRefGoogle Scholar
  32. Jonker, H. G., 1964, Some aspects of semiconducting barium titanate, Solid-State Electron., 7: 895.ADSCrossRefGoogle Scholar
  33. Jonker, H. G., 1967, Halogen treatment of barium titanate semiconductors, Mat. Res. Bull., 2: 401.CrossRefGoogle Scholar
  34. Khan, M., 1971, Effect of heat treatment on the PTCR anomaly in semi-conducting barium titanate, Am. Ceram. Soc. Bull., 50 (B): 676.Google Scholar
  35. Kulwicki, M. B., and Purdes, J. A., 1970, Diffusion potentials in barium titanate and the theory of PTC materials, Ferroelectrics, 1:253.CrossRefGoogle Scholar
  36. Lewis, V. G., Catlow, A. R. C., and Casselton, W., E., R., 1985, PTCR effect in Ba TiO3, J. Am, Ceram. Soc., 68 (10): 555.CrossRefGoogle Scholar
  37. Mallick, Jr., T. G., and Emtage, R. P., 1986, Current voltage characteristics of semiconducting barium tiatnate ceramic, J. Appl. Phys., 39 (7): 3088.ADSCrossRefGoogle Scholar
  38. Mason, P. W., and Thurston, N. R., 1957, Use of piezoresistive materials in the measurement of displacement, force, and torque, J. Acoust. Soc. Am., 29 (10): 1096.ADSCrossRefGoogle Scholar
  39. Nye, J. F., 1976, “Physical properties of Crystals and Their Representation by Tensors and Matrices,” Cambridge, London.Google Scholar
  40. Paul, W., and Pearson, L. G., 1955, Pressure dependence of the resistivity of silicon, Phys. Rev., 98: 1755.ADSCrossRefGoogle Scholar
  41. Paul, W., and Brooks, H., 1954, Pressure dependence of the resistivity of germanium, Phys. Rev., 94: 1128.ADSCrossRefGoogle Scholar
  42. Peercy, P. S., and Samara, G. A., 1973, Pressure and temperature dependences of the dielectric properties and Raman spectra of RbH2PO4., Phy. Rev., 88: 2033.Google Scholar
  43. Saburi, O., 1960, Piezoresistivity in semiconductive barium titanate, J. Phys. Soc. Jpn., 15: 733.ADSCrossRefGoogle Scholar
  44. Samara, G. A., 1966, Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3., Phys. Rev., 151(2): 378.ADSCrossRefGoogle Scholar
  45. Samara, G. A., 1970, The effect of hydrostatic pressure on ferroelectric properties, J. Phys. Soc. Jpn., suppl. 28: 399.Google Scholar
  46. Samara, G. A., Sakudo, T., Yoshimitsu, K., 1975, Important generalization concerning the role of competing forces in displacive phase transitions, Phys. Rev. Lett. 35 (26): 1767.ADSCrossRefGoogle Scholar
  47. Sauer, A. H., Flaschen, S. S., and Hoesterey, C. D., 1959, Piezoresistance and piezocapacitance effect in barium strontium titanate ceramics, J. Am. Ceram. Soc., 42 (8): 363.CrossRefGoogle Scholar
  48. Scholl, E. J., 1986, Lowering of grain—boundary heights by grain curvature, J. Appl. Phys., 60 (4): 1434.ADSCrossRefGoogle Scholar
  49. Shirane, G., 1970, Neutron inelastic scattering study of soft modes, J. Phys. Soc. Jpn., suppl. 28: 20.Google Scholar
  50. Smith, S. C., 1954, Piezoresistance effect in germanium and silicon, Phys. Rev., 94 (1): 42.ADSCrossRefGoogle Scholar
  51. Yasukawa, A., Shimada, S., Yoshitaka, M., and Kanda, Y., 1982, Design considerations for silicon circular diaphragm pressure sensors, Jpn. J. Appl. Phys., 21 (7): 1052.ADSGoogle Scholar
  52. Zaima, S., Yasuda, Y., Kawaguchi, S., Tsuneyoshif M., Nakamura, T., and Yoshida, A., 1986, Piezoresistance in n-channel inversion layers of silicon films on sapphire, J. Appl. Phys., 60 (11): 3959.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ahmed Amin
    • 1
  1. 1.Advanced Development LaboratoryTexas Instruments IncorporatedAttleboroEngland

Personalised recommendations