Skip to main content

R@-System — The Software System for Real Biomedical Data Acquisition and Processing with Regard to Clinic and Research

  • Conference paper
Advances in Biomedical Measurement
  • 170 Accesses

Abstract

A number of technical problems arise in the acquisition and processing of real biomedical data (biosignals — such as EEG, EMG, ECG, some evoked potentials, and so on). In general, physicians would rather buy standard equipment for their clinical examinations. However, by so doing they are totally dependent on the market supply, because when installed the equipment is usually hard-wired and not changeable by the user. Therefore problems may arise when they wish to update their equipment and experiment with some new non-standard method. In such cases scientists would rather construct their own equipment. In practice, they often buy some minicomputer or personal computer with a graphical display, equip it with a plotter and A/D converters and connect it to some EEG, EMG or ECG apparatus. Then they write software for their own methods of examination themselves. By operating in this manner, writing their particular routines takes a great deal of time. The work may be difficult and the results are non-standard, and usually non-compatible with other systems, such that they are hardly usable elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bastiaans, M. J., 1980, Gabor’s expansion of a signal into Gaussian elementary signals, Proc. IEEE 68: 538.

    Article  Google Scholar 

  • Dvorřák, I., and Šiška, J., 1986, On some problem encountered in calculating the correlation dimension of EEG, Phys. Letters A 118(2): 63.

    Article  ADS  Google Scholar 

  • Dvorřák, I., Šiška, J., Wackerman, J., Hrudovg, L., and Dostalek, C., 1986, Evidence for interpretation of EEG as a deterministic chaotic process with a low dimension, Activitas Neurose Superior 28(3): 228.

    Google Scholar 

  • French, A. S., and Butz, E. G., 1973, Measuring the Wiener kernels of a non-linear system using the Fast Fourier Transform algorithm, Int. J. Contr., 17: 529.

    Article  MATH  Google Scholar 

  • French, A. S., and Butz, E. G., 1974, The use of Walsh Functions in the Wiener analysis of nonlinear systems, IEEE Trans. Comput., C-23(3): 225.

    Article  MathSciNet  Google Scholar 

  • French, A. S., 1976, Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain, Biol. Cybern., 24: 111.

    Article  MATH  Google Scholar 

  • Gabor, D., 1946, Theory of communication, J. IEE: 429.

    Google Scholar 

  • Herman, P., 1978, Nonlinear Analysis of Electroneurological Preparats, MMF UK, Prague (in Czech).

    Google Scholar 

  • Kadri, F. L., 1972, A method of determining the crosscorrelation functions for a class of non-linear systems, Int. J. Contr., 15: 779.

    Article  MATH  Google Scholar 

  • Koblasz, A. J., 1978, Nonlinearities of the human ERG reflected by Wiener kernels, Biol. Cybern., 31(4): 187.

    Article  MATH  Google Scholar 

  • Koblasz, A., Rae, J. L., Correia, M. J., and Ni, M.-D., 1980, Wiener kernels and frequency response functions for the human retina, IEEE Trans. Biomed. Eng., BME-27(2): 68.

    Article  Google Scholar 

  • Krausz, H., 1975, Identification of nonlinear systems using random impulse train inputs, Biol. Cybern., 19: 217.

    Article  MATH  Google Scholar 

  • Larkin, R. M., Klein, S., Odgen, T. E., and Tender, D. H., 1979, Nonlinear kernels of the human ERG, Biol. Cybern., 35(3): 145.

    Article  Google Scholar 

  • Lee, Y. W., and Schetzen, M., 1965, Measurement of the Wiener kernels of a non-linear system by cross-correlation, Int. J. Contr., 2: 237.

    Article  Google Scholar 

  • Marmarelis, P. Z., 1972, Nonlinear identification of bioneural system through white-noise stimulation, in: “Proc. 13th Joint Automatic Control Conference”, Stanford: 117.

    Google Scholar 

  • Marmarelis, P. Z., and Naka, K. I., 1972, White noise analysis of a neuron chain: an application of the Wiener theory, Science 175: 1276.

    Article  ADS  Google Scholar 

  • Marmarelis, P. Z., and McCann, G. D., 1973, Development and application of white-noise modeling techniques for studies of insect visual nervous system, Kybernetik 12: 74.

    Article  Google Scholar 

  • Marmarelis, P. Z., and Naka, K. I., 1973, Non-linear analysis and synthesis of receptive field responses in the catfish retina, J. Neurophysiol., 36: 605.

    Google Scholar 

  • Marmarelis, P. Z., and Naka, K. I., 1974, Identification of multi-input biological systems, IEEE Trans. Biomed. Eng., BME-2l(2): 88.

    Article  Google Scholar 

  • Marmarelis, P. Z., and Marmarelis, V. Z., 1978, “Analysis of Physiological Systems”, Plenum, New York.

    Google Scholar 

  • Moore, G., Herman, P., Krekule, I., and Bureg, J., 1977, Application of the nonlinear Wiener theory of the analysis of evoked activity of an epileptic focus in the motor cortex in rats, in: “3rd Conference of Biomedical Engineering”, Brno.

    Google Scholar 

  • Rajbman, N. S., and Terechin, A. T., 1965, Dispersion methods of random functions and their use for study of nonlinear control plants, Avtomatika i Telemechanika 26: 500 (in Russian).

    Google Scholar 

  • Rajbman, N. S., and Han, O. F., 1967, Dispersion methods of identification of multidimensional nonlinear control plants, Avtomatika i Telemechanika, 28(5):5 (in Russian).

    Google Scholar 

  • Rajbman, N. S., 1981, “Dispersion Analysis”, Nauka, Moscow (in Russian).

    Google Scholar 

  • Seelen, W.von, and Hoffmann, K.-P., 1976, Analysis of neuronal networks in the visual system of the cat using statistical signals, Biol. Cybern., 22:7.

    Article  MATH  Google Scholar 

  • Trimble, J., and Phillips, G., 1978, Nonlinear analysis of the human visual evoked response, Biol. Cybern., 30(1):55.

    Article  Google Scholar 

  • Wickesberg, R. E., and Geisler, C. G., 1984, Artifacts in Wiener kernels estimated using Gaussian white noise, IEEE Trans. Biomed. Eng., BME-31: 454.

    Article  Google Scholar 

  • Wiener, N., 1958, “Nonlinear Problems in Random Theory”, Wiley, New York.

    MATH  Google Scholar 

  • Yasui, S., Davis, W., and Naka, K. I., 1979, Spatio-temporal receptive field measurement of retinal neurons by random pattern stimulation and cross-correlation, IEEE Trans. Biomed. Eng., BME-26: 263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Heřman, P. (1988). R@-System — The Software System for Real Biomedical Data Acquisition and Processing with Regard to Clinic and Research. In: Carson, E.R., Kneppo, P., Krekule, I. (eds) Advances in Biomedical Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1025-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1025-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8298-3

  • Online ISBN: 978-1-4613-1025-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics