Intramolecular Electron Transfer in the Liquid Phase

  • Jean Pierre Launay


Intramolecular electron transfer is currently the subject of much experimental and theoretical studies, due to its wide occurence in diverse fields of chemistry, physics and biology1. From a fundamental point of view, it is one of the simplest conceivable chemical reactions. Its study in discrete molecular species is a very active research topic and could lead to a better understanding of the process of charge migration in condensed matter. This studies are performed on chemical systems containing two redox sites linked by some kind of bridge. In addition to their interest for fundamental research, such systems can be considered as precursors of “molecular” electronic devices2.


Electron Transfer Potential Energy Curve Electronic Coupling Intramolecular Electron Transfer Vibronic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    See for instance R.D. Cannon, “Electron transfer reactions”, Butterworths, London, 1980Google Scholar
  2. 1b.
    B. Chance, D. De Vault, H. Frauenfelder, R.A. Marcus, J.R. Schrieffer, N.Sutin, “Tunneling in Biological Systems”, Acad. Press, New York, 1979Google Scholar
  3. 1c.
    Progress Inorg. Chem.: An appreciation of H. Taube 30 (1983)Google Scholar
  4. 1d.
    T. Guarr and G. Mc Lendon, Coord. Chem. Rev. 68, 1 (1985).CrossRefGoogle Scholar
  5. 1e.
    M. D. Newton and N. Sutin, Ann. Rev. Phys. Chem. 35,437 (1984)CrossRefGoogle Scholar
  6. 2.
    J.P. Launay, S. Woitellier, M. Sowinska, M. Tourrel and C. Joachim. Proc. 3rd Int. Symp. on “Molecular” Electronic Devices, Ed. by F.L. Carter and H. Wohltjen, North-Holland, Amsterdam, in press.Google Scholar
  7. 3.
    C. Creutz. Progr. Inorg. Chem. 30, 1 (1983).CrossRefGoogle Scholar
  8. 4.
    C. Sanchez, J. Livage, J.P. Launay and M. Fournier. J. Am. Chem. Soc. 105, 6817 (1983).CrossRefGoogle Scholar
  9. 5a.
    N. Sutin. Ann. Rev. Nucl. Sci., 12, 285 (1962)CrossRefGoogle Scholar
  10. 5b.
    N. Sutin. Progr. Inorg. Chem. 30,441 (1983)CrossRefGoogle Scholar
  11. 6.
    R.A. Marcus. Disc. Farad. Soc. 29,21 (1960)CrossRefGoogle Scholar
  12. 6b.
    N.S. Hush. Trans. Farad. Soc. 57, 557 (1961); see also R.D. Cannon, op. cit. p.201.CrossRefGoogle Scholar
  13. 7.
    V. Levich and R.R. Dogonadze. Dokl. Akad Nauk SSSR 133, 158 (1960).Google Scholar
  14. 8a.
    N.R. Kestner, J. Logan, J. Jortner. J. Phvs. Chem. 78, 2148 (1974)CrossRefGoogle Scholar
  15. 8b.
    J. Jortner. J. Chem. Phvs. 64,4860 (1976).CrossRefGoogle Scholar
  16. 9.
    K.Y. Wong and P.N. Schatz. Progr. Inorg. Chem. 28, 369 (1981).CrossRefGoogle Scholar
  17. 10.
    S. Bratos, Private communicationGoogle Scholar
  18. 11.
    S.B. Piepho, E.R. Krausz and P.N. Schatz. J. Am. Chem. Soc. 100, 2996 (1978).CrossRefGoogle Scholar
  19. 12.
    F. Babonneau and J. Livage. Nouv. J. Chimie. 10A 191 (1986).Google Scholar
  20. 13.
    M. Bixon and J. Jortner. Farad. Disc. Chem. Soc. 74, 17 (1982)CrossRefGoogle Scholar
  21. 14a.
    C. Joachim and J.P. Launay. Chem. Phys 109, 93 (1986)CrossRefGoogle Scholar
  22. 14b.
    C. Joachim and J.P. Launay. Proc. 3r d Int. Symp. on “Molecular” Electronic Devices, Ed. by F.L. Carter and H. Wohltjen, North-Holland, Amsterdam, in press.Google Scholar
  23. 15.
    J.E. Harriman and A.H. Maki. J. Chem. Phvs. 39, 778 (1963).CrossRefGoogle Scholar
  24. 16.
    W. Huber and K. Mullen. Acc. Chem. Res. 19, 300 (1986).CrossRefGoogle Scholar
  25. 17a.
    G.M. Tom, C. Creutz and H. Taube. J. Am. Chem. Soc. 96,7827 (1974)CrossRefGoogle Scholar
  26. 17b.
    M.J. Powers and T.J. Meyer. J. Am. Chem. Soc. 102, 1289 (1980)CrossRefGoogle Scholar
  27. 17c.
    B.P. Sullivan, J.C. Curtis, E.M. Kober and T.J. Meyer. Nouv. J. Chimie 4, 643 (1980).Google Scholar
  28. 18.
    C.W. Spangler, S. Woitellier and J.P. Launay, work in progress.Google Scholar
  29. 19.
    J.C. Curtis, B.P. Sullivan and T.J. Meyer. Inorg. Chem. 22, 224 (1983).CrossRefGoogle Scholar
  30. 20a.
    J.T. Hupp and J. Weydert. Inorg. Chem. 26, 2657 (1987)CrossRefGoogle Scholar
  31. 20b.
    K.S. Ennix, P.T. Mc Mahon, R. de la Rosa and J.C. Curtis. Inorg. Chem. 26, 2660 (1987).CrossRefGoogle Scholar
  32. 21.
    J.T. Hupp, G.A.Neyhart and T.J. Meyer. J. Am. Chem. Soc. 108, 5350 (1986).CrossRefGoogle Scholar
  33. 22.
    C. Creutz, P. Kroger, T. Matsubara, T. L. Netzel, and N. Sutin J. Am. Chem. Soc. 101,5442(1979)CrossRefGoogle Scholar
  34. 23a.
    K.S. Schanze and T.J. Meyer Inorg. Chem. 24. 2121 (1985)CrossRefGoogle Scholar
  35. 23b.
    K. S. Schanze, G. A. Neyhart, and T. J. Meyer J. Phvs. Chem. 90, 2182 (1986)CrossRefGoogle Scholar
  36. 24.
    G. F. Mes, B. de Jong, H. J. van Ramesdonk, J. W. Verhoeven, J. M. Warman, M. P. de Haas, and L. E. W. Horsman van den Dool J. Am. Chem. Soc. 106, 6524 (1984)CrossRefGoogle Scholar
  37. 25a.
    Z. R. Grabowski, K. Rotkiewicz, A. Semiarczuk, D. J. Cowley, and W. Baumann, Nouv. J. Chimie 3,443 (1979).Google Scholar
  38. 25b.
    W. Rettig, Angew. Chem. Int. Ed. Engl. 25,971 (1986)CrossRefGoogle Scholar
  39. 26.
    F. Heisel and J. A. Miehe Chem. Phvs. Lett. 128, 323 (1986)CrossRefGoogle Scholar
  40. 27.
    M. Sowinska, J.P. Launay, J. Mugnier, J. Pouget, and B. Valeur J. Photochem., 37, 69 (1987)CrossRefGoogle Scholar
  41. 28.
    M. Sowinska, F. Heisel, J. A. Miehe and J. P. Launay To be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jean Pierre Launay
    • 1
  1. 1.Laboratoire de Chimie des Métaux de TransitionUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations