Advertisement

Growth of Chlorobium Limicola F. Thiosulfatophilum on Polysulfides

  • P. T. Visscher
  • H. van Gemerden

Abstract

Elemental sulfur is commonly found as an intermediate product in the oxidation of sulfide by green and purple bacteria. In the early tog phase, when growing on sulfide, batch cultures of these anoxygenic phototrophic bacteria have a milky appearance due to the often massive accumulation of elemental sulfur, either stored intracellulary (Chromatiaceae) or extracellularly (Chlorobiaceae and Ectothiorhodospiraceae). The amount of sulfur decreases after sulfide depletion, since its oxidation to sulfate continues, whereas its formation from sulfide has stopped. However, in some species sulfur oxidation does not start before the sulfide supply is exhausted (Trüper, 1978). In batch cultures of Chromatium vinosum it has been observed that, prior to sulfide depletion, the specific content of sulfur (mmol mg protein-1) shows little variation (van Gemerden, 1968, 1984). The maximum specific content of sulfur in different species of purple sulfur bacteria is very similar, i e, 30–35% of the ash-free dry weight (van Niel, 1931; Triiper and Schlegel, 1964; van Gemerden, 1968; lias and van Gemerden, 1987). Chlorobium species have been much less studied in this respect, but generally marine species deposit less sulfur than fresh water strains do. The accumulation of elemental sulfur is the result of the nature of the initial substrate, but the specific content of sulfur is very much influenced by the growth rate.

Keywords

Dilution Rate Hydrogen Sulfide Average Chain Length Purple Sulfur Bacterium High diLution Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beef ting, H.H., and van Gemerden, H., 1979, Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum, Arch. Microbiol., 121:161.CrossRefGoogle Scholar
  2. Berner, R.A., 1963, Electrode studies of hydrogen sulfide in marine sediments, Geochim. Cosmochem. Acta, 27:583.CrossRefGoogle Scholar
  3. Eisenthat, R., and Cornish-Bowden, A., 1974, The direct linear plot.A new graphic procedure for estimating enzyme kinetic parameters, Biochem. J., 139:715.Google Scholar
  4. Feher, F., and Berthold, D., 1953, Über das System des Natrium-Schwefels, Z Anorg. Allg. Chem., 273:144.CrossRefGoogle Scholar
  5. Feher, F., and Laue, W., 1956, Beitrage zur Chemie des Scihwefels.XXIX. ber die Darstellung von Rohsulfanen, Z. Anorq. Allg, Chem., 286:103.CrossRefGoogle Scholar
  6. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., 1951, Protein measurements with the Folin-phenot reagent, J. Biol. Chem., 193:265.PubMedGoogle Scholar
  7. Mas, J., and van Gemerden, H., 1987, Influence of sulfur accumulation and. composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum, Arch. Microbiol., 146:362.CrossRefGoogle Scholar
  8. Pachmayr, F., 1960, Vorkommen und Bestimmung von Schwef eI verb i ndungen in Mineralwasser, Ph.D. Thesis, Univ. Munchen, F.R.G.Google Scholar
  9. Schedel, M., 1976, Untersuchungen zur anaeroben Oxidation reduzierter Schwefelverbindungen durch Thiobacillus denitrificans, Chromatium vinosum und Chlorobium limicola, Ph.D. Thesis, Univ. Bonn, F.R.G.Google Scholar
  10. Stal, L.J., van Gemerden, H., and Krumbein, W., 1964, The simultaneous assay of chlorophyll and bacteriochlorophylI in microbial communities, J. Microbial Meth. 2:295.CrossRefGoogle Scholar
  11. Then, J., 1984, Beitrage zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris, Ph.D. Thesis, Univ. Bonn, F.R.G.Google Scholar
  12. Trüper, H. G., 1978, Sulfur metabolism, in: “The Photosynthetic Bacteria,” R.K. Clayton and W.R. Sistrom, eds., Plenum, New York.Google Scholar
  13. Trüper, H.G., and Schleget, H. G,, 1964, Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii, Anthonie van Leeuwenhoek J. Microbiol. Serol., 30:225.Google Scholar
  14. van Gemerden, H.1968, Growth measurements of Chromatium cultures, Arch. Microbiol., 64:103.CrossRefGoogle Scholar
  15. van Gemerden, H., 1964, The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur, Arch. Microbiol., 139:289.CrossRefGoogle Scholar
  16. van Gemerden, H., 1967, Competition between purple sulfur bacteria and green sulfur bacteria: role of sulfide, sulfur and polysulfides, Acta Acad. Abo., 47:13.Google Scholar
  17. van Gemerden, H., and Beeftink, H.H., 1978, Specific rates of substrate oxidation and product formation in autotrophically growing Chromatium vinosum cultures, Arch. Microbiol., 119:135.CrossRefGoogle Scholar
  18. van Niel, C.B., 1931, On the morphology and physiology of purple and green sulphur bacteria. Arch. Mikrobiol., 3:1.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • P. T. Visscher
    • 1
    • 2
  • H. van Gemerden
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands
  2. 2.Netherlands Institute for Sea ResearchDen Burg, TexelThe Netherlands

Personalised recommendations