Complex Formation Between Chlorobium F. Thiosulfatophilum C-Type Cytochromes

  • M. W. Davidson
  • T. E. Meyer
  • M. R. Cusanovich
  • O. B. Knaff

Summary

Chlorobium contains three soluble c-type cytochromes that are involved in the oxidation of sulfur-containing electron donors by this bacterium, Ftavocytochrome “c553”, which consists of a 47-kDa subunit containing a single covalentty bound FRO and a 11-kDa subunit containing a single heme c (Meyer et al., 1986; Yamanaka, 1976; Yamanaka et al., 1979), has been demonstrated to catalyze electron flow from sulfide to Cyt “c555” (Kusai and Yamanaka, 1973, 1978; Kusai and Fukumori, 1980).

Keywords

Sulfide Lysine Photosynthesis Thiosulfate Flavin 

References

  1. Bosshard, H.R., Davidson, M.W., Knaff, D. B,, and Millett, F., 1966, Complex formation and electron transfer between mitochondrial cytochrome c and flavocytochrome c552 from Chromatium vinosum, J. Biol. Chem., 261:190.Google Scholar
  2. Davidson, M.W., Meyer, T.E., Cusanovich, M.A., and Knaff, D.B., 1986, Complex formation between Chlorobium limicola f. thiosulfatophilum c-type cytochromes, Biochim. Biophvs. Acta, 650:396.CrossRefGoogle Scholar
  3. Gray, G.D., and Knaff, D.B., 1962, The role of a cytochrome c552: cytochrome c complex in the oxidation of sulfide in Chromatium vinosum, Biochim. Biophvs. Acta, 660:290.Google Scholar
  4. Kusai, A., and Yamanaka, T., 1973, Cytochrome c (553 Chlorobium thiosulfatophilum) is a sulphide-cytochrome c reductase, FEBS Lett., 34:235.PubMedCrossRefGoogle Scholar
  5. Kusai, A., and Yamanaka, T., 1973, A novel function of cytochrome c (555, Chlorobium thiosulfatophilum) in oxidation of thiosulfate, Biochem. Biophys. Res. Comm., 51:107.PubMedCrossRefGoogle Scholar
  6. Kusai, A., and Yamanaka, T., 1976, The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulfatophilum: roles of cytochrome c-551 and cytochrome c-553, Biochim. Biophys. Acta, 325:304.Google Scholar
  7. Meyer, T.E., Bartsch, R.G., Cusanich, M.A., and Mathewson, J. S., 1966, The cytochromes of Chlorobium thiosulfatophilum, Biochim. Biophys. Acta, 153:654.Google Scholar
  8. Salemme, R.F., 1977, Structure and function of cytochromes c, Ann. Rev. Biochem., 46:299.PubMedCrossRefGoogle Scholar
  9. Trüper, H.G., and Fischer, U., 1962, Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis, Phil. Trans. Roy. Soc. London B, 296:529.Google Scholar
  10. Yamanaka, T., 1976, The subunits of Chlorobium flavocytochrome c, J. Biochem., 79:655.PubMedGoogle Scholar
  11. Yamanaka, T., Fukumori, Y., and Okunuki, K., 1979, Preparation of subunits of flavocytochromes c derived from Chlorobium limicola f. thiosulfatophilum and Chromatium vinosum, Anal. Biochem., 95:209.PubMedCrossRefGoogle Scholar
  12. Yamanaka, T., and Fukumori, Y., 1960, A biochemical comparison between Chlorobium and Chromatium flavocytochromes c, in: “Flavins and Flavoproteins,” K. Yaqi, and T. Yamano, eds., Japan Scientific Societies Press, Tokyo.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. W. Davidson
    • 1
  • T. E. Meyer
    • 2
  • M. R. Cusanovich
    • 2
  • O. B. Knaff
    • 1
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA
  2. 2.Department of BiochemistryUniversity of ArizonaTucsonUSA

Personalised recommendations