Transient Reversible Growth and Percolation During Phase Separation

  • Dieter W. Heermann


Binary mixtures when quenched into the two-phase region exhibit transient percolation phenomena. These transient percolation phenomena and the underlying mechanism of transient reversible growth are investigated. In particular, one of the possible dynamical percolation lines between the dynamical spinodal and the line of macroscopic percolation is traced out. Analyzing the finite size effects with the usual scaling theory one finds exponents which seem to be inconsistent with the universality class of percolation. However, at zero temperature, where the growth is non-reversible and the transition of a sol-gel type, the exponents are consistent with those of random percolation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Stauffer, An Introduction to Percolation Theory3 Taylor and Francis, London, 1985CrossRefGoogle Scholar
  2. 2.
    J.W. Essam, Rep. Prog. Phys. 54,1 (1979)Google Scholar
  3. 3.
    Algorithms for the recognition of clusters can be found in • J. Hoshen and R. Kopelman, Phys. Rev. B. 14, 3428 (1976) • R. Dewar and C.K. Harris, in Fractals in Physics3 eds. L. Pietronero and E. Tosatti, Elsevier Science Publishers Amsterdam, 1986Google Scholar
  4. 4.
    A. Coniglio, J. Phys. A 8, 1773 (1975)Google Scholar
  5. 5.
    A. Coniglio, F. Peruggi, C. Nappi, and L. Russo, J. Phys. A 10, 205 (1977)Google Scholar
  6. 6.
    A. Coniglio and W. Klein, J. Phys. A 13,2775 (1980)Google Scholar
  7. 7.
    H. MiiJ ler-Krumbhaar, Phys. Lett. A 50,27 (1974)CrossRefGoogle Scholar
  8. 8.
    D.W. Heermann and D. Stauffer, Z. Phys. B 44,339 (1981)CrossRefGoogle Scholar
  9. 9.
    D. Stauffer, A. Coniglio and M. Adam, Adv. Poly. Scie. 44,103 (1981)CrossRefGoogle Scholar
  10. 10.
    J.D. Gunton, M. San Miguel, and P.S. Sahni, in Phase Transitions and Critical Phenomena3 vol 8, eds C. Domb and J.L. Lebowitz, Academic Press, New York, 1983Google Scholar
  11. 11.
    K. Binder and D.W. Heermann, in Scaling Phenomena in Disordered Systems, eds P. Pynn and A. Skeltrop, Plenum, 1984Google Scholar
  12. 12.
    K. Binder, in Condensed Matter Research using Neutrons, eds S.W. Lovesey and R. Scherm, Plenum Press, New York, 1984Google Scholar
  13. 13.
    K. Binder, Solid State Comm. 34,191 (1980)CrossRefGoogle Scholar
  14. 14.
    D.W. Heermann, Z. Phys. B 55,309 (1984)CrossRefGoogle Scholar
  15. 15.
    D.W. Heermann, K. Binder, and S. Hayward, in Proceedings of the 2nd Bar-Ilan Conference ed. C. Domb, Phil, Mag. (1987)Google Scholar
  16. 16.
    S. Hayward, D.W. Heermann, and K. Binder, J. Statis. Phys. to appearGoogle Scholar
  17. 17.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983)CrossRefGoogle Scholar
  18. 18.
    K. Binder, ed. Applications of the Monte Carlo Method in Statistical Physics, Springer Verlag, Berlin, 1984Google Scholar
  19. 19.
    D.W. Heermann, Introduction to the Computer Simulation Methods of Theoretical Physics3 Springer Verlag, Heidelberg, 1986Google Scholar
  20. 20.
    M.H. Kalos and P.A. Whitlock, Monte Carlo Methods Vol. 1, Wiley, New York, 1986CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Dieter W. Heermann
    • 1
  1. 1.Institut für PhysikJohannes-Gutenberg UniversitätMainzWest Germany

Personalised recommendations