Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 176))

Abstract

These lectures will be concerned with the following problem:

Let v be fixed in [1, 2]. Find real constants λ ∈ (0, 1) and r > 1, and a solutionof the functional equation

$$ phi (x) = - \frac{1}{\lambda }\phi \left( {\frac{1}{{\lambda ^{v - 1} }}\phi (\lambda ^v x)} \right),\;\phi (0) = 1, $$
(1.1)

with the properties C1,C2 below, and a further property C3 to be stated later C1. φ is C1 and strictly decreasing on [0, L] for some L ≥ 1. For all x ∈ [0, L], φ (⋋v x) is in [0, ⋋v-1 L] and (1.1) holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Ahlfors: Conformal Invariants. McGraw-Hill, New York, 1973

    MATH  Google Scholar 

  2. M. Cosnard: Etude des solutions de l’équation fonctionnelle de Feigenbaum. Bifurcations, théorie ergodique et applications; Astérisque, 98–99, 143–62 (1982)

    MathSciNet  Google Scholar 

  3. P. Collet and J.-P. Eckmann: Iterated maps of the interval as dynamical systems. Boston, Birkhaüser 1980

    Google Scholar 

  4. P. Collet, J.-P. Eckmann, and O.E.Lanford III: Universal properties of maps on the interval. Commun. Math. Phys, 76, 211–54 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M. Campanino, H. Epstein, and D. Ruelle: On Feigenbaum’s functional equation. Topology 21, 125–9 (1982). On the existence of Feigenbaum’s fixed point: Commun. Math. Phys. 79,261–302 (1981)

    Article  MathSciNet  Google Scholar 

  6. P. Coullet and C. Tresser: Itération d’endomorphismes et groupe de renormalisation. J. de Physique Colloque C 539, C5–25 (1978). CRAS Paris 287 A, (1978)

    Google Scholar 

  7. W.F. Donoghue, Jr.: Monotone matrix functions and analytic continuation. Berlin, Springer Verlag 1974

    MATH  Google Scholar 

  8. A. Douady and J.H. Hubbard: On the dynamics of polynomial-like mappings. Ann. Scient. Ec. Norm. Sup. 4ème série, 18, 287–343, 1985

    MathSciNet  MATH  Google Scholar 

  9. H. Epstein: New proofs of the existence of the Feigenbaum functions. Commun. Math. Phys., 106, 395–426 (1986)

    Article  ADS  MATH  Google Scholar 

  10. J.-P. Eckmann and H. Epstein: On the existence of fixed points of the composition operator for circle maps. Commun. Math. Phys., 107, 213–231 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J.-P. Eckmann and H. Epstein: Fixed points of composition operators. VIIIth International Congress on Mathematical Physics (Marseille, 1986), M. Mebkhout and R. Seneor eds. Singapore, World Scientific, 1987

    Google Scholar 

  12. H. Epstein and J. Lascoux: Analyticity properties of the Feigenbaum function. Commun. Math. Phys. 81,437–53 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J.-P. Eckmann and P. Wittwer: Computer methods and Borel summability applied to Feigenbaum’s equation Lecture Notes in Physics 227. Berlin, Springer Verlag 1985

    Book  MATH  Google Scholar 

  14. J.-P. Eckmann and P. Wittwer: A complete proof of the Feigenbaum conjectures. To appear

    Google Scholar 

  15. C.Falcolini: Some solutions of Feigenbaum’s functional equation. Boll. Unione Matematica Italiana (7) 1-A, 1987, to appear

    Google Scholar 

  16. M.J. Feigenbaum: Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52 (1978). Universal metric properties of non-linear transformations. J. Stat. Phys. 21,669–706 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M.J. Feigenbaum, L.P. Kadanoff, and S.J. Shenker: Quasi-periodicity in dissipative systems: a renormalization group analysis. Physica 5D, 370–386 (1982)

    MathSciNet  ADS  Google Scholar 

  18. J. Grueneveld: On constructing complete solution classes of the CvitanovićFeigenbaum equation. Physica 138A 137–166 (1986)

    ADS  Google Scholar 

  19. L. Jonker and D. Rand: Universal properties of maps of the circle with singularities. Commun. Math. Phys. 90, 273–292 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. O.E. Lanford III: Remarks on the accumulation of period-doubling bifurcations. Mathematical problems in Theoretical Physics, Lecture Notes in Physics vol.l16, pp. 340–342. Springer Verlag. Berlin, 1980. A computer-assisted proof of the Feigenbaum conjectures. Bull.Amer.Math.Soc., New Series, 6,127 (1984)

    Google Scholar 

  21. O.E. Lanford III: A shorter proof of the existence of the Feigenbaum fixed point. Commun. Math. Phys. 96, 521–38 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. O.E. Lanford III: Functional equations for circle homeomorphisms with golden ratio rotation number. Jour. Stat. Phys. 34,57–73 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. O.E. Lanford III: Renormalization group methods for circle mappings. Proceedings of the Conference on Statistical Mechanics and Field Theory: Mathematical aspects, Groningen 1985 (Springer Lecture Notes in Physics, to appear)

    Google Scholar 

  24. O.E. Lanford III and R. de la Llave: in preparation

    Google Scholar 

  25. B. Mestel: Ph. D. Dissertation, Department of Mathematics, Warwick University (1985)

    Google Scholar 

  26. M. Nauenberg: On fixed points for circle maps. Phys. Letters AB 92 319–320 (1982)

    MathSciNet  ADS  Google Scholar 

  27. S. Ostlund, D. Rand, J. Sethna, and E. Siggia: Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. Physica 8D, 303–342 (1983)

    MathSciNet  ADS  Google Scholar 

  28. D. Sullivan: Quasi-conformal conjugacy classes and the stable manifold of the Feigenbaum operator. Preprint, 1986. Quasiconformal homeomorphisms in dynamics, topology, and geometry. Preprint, 1986

    Google Scholar 

  29. G. Valiron: Fonctions Analytiques. Paris, Presses Universitaires de France 1954

    MATH  Google Scholar 

  30. E.B. Vul, Ya.G. Sinai, and K.M. Khanin: Feigenbaum universality and the thermodynamical formalism. Uspekhi Mat. Nauk 39, 3–37 (1984)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Epstein, H. (1988). Fixed Points of Composition Operators. In: Gallavotti, G., Zweifel, P.F. (eds) Nonlinear Evolution and Chaotic Phenomena. NATO ASI Series, vol 176. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1017-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1017-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8294-5

  • Online ISBN: 978-1-4613-1017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics