Recent Results of Experiments with Saffman-Taylor Flow

  • Mark W. DiFrancesco
Part of the NATO ASI Series book series (NSSB, volume 176)


In this paper we summarize our recent work on the viscous fingering probleml,2. In its initially planar form, Saffman-Taylor flow3, viscous fingering represents the simplest of pattern formation problems. Thus the observation of its details provides a valuable opportunity for direct testing of the computer calculations which are now just becoming feasible for pattern formation4, Despite its extreme simplicity, Saffman- Taylor flow has much in common with the Mullins-Sekerka instability5 which gives rise to dendritic growth in alloys. In this paper we first discuss the formal similarity between the dispersion relations for the Saffman-Taylor and Mullins-Sekerka instabilities, then we set out some of our recent results on the Saffman-Taylor problem1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. * Work done in collaboration with J. V. MaherGoogle Scholar
  2. 1.
    J. V. Maher, Phys. Rev. Lett. 54, 1498 (1985); in, The Physics of Finely Divided Matter, ed. by N. Boccara and M. Daoud (Springer-Verlag, Berlin, 1985) p. 252 – 257ADSCrossRefGoogle Scholar
  3. 2.
    S. N. Rauseo, P. D. Barnes, Jr., and J. V. Maher, Phys. Rev. A 35, 1245 (1987)ADSGoogle Scholar
  4. 3.
    P. G. Saffman and G. I. Taylor, Proc. R. Soc. London Sere A 245, 312 (1958)MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    D. Kessler and H. Levine, Phys. Rev. A 33, 2632 (1986); 33, 2639 (1986)ADSGoogle Scholar
  6. L. M. Sander, P. Ramanlal, and E. Ben-Jacob, ibid. 32, 3160 (1985)ADSGoogle Scholar
  7. E. Ben-Jacob, N. D. Goldenfeld, J. Koplik, H. Levine, T. Mueller, and L. M. Sander, Phys. Rev. Lett. 55, 1315 (1985)ADSCrossRefGoogle Scholar
  8. G. Daccord, J. Nittman, and H. E. Stanley, ibid. 56, 336 (1986)ADSCrossRefGoogle Scholar
  9. B. I. Shraiman, ibid. 56, 2028 (1986)ADSCrossRefGoogle Scholar
  10. D. C. Hong and J. S. Langer, ibid. 56, 2032 (1986)ADSCrossRefGoogle Scholar
  11. R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, and A. Pumir, ibid. 56, 2036 (1986)ADSCrossRefGoogle Scholar
  12. D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, and C. Tang (unpublished); A.J. DiGregoria and L. W. Schwartz, J. Fluid Mech. 164, 383 (1986)MathSciNetCrossRefGoogle Scholar
  13. J. Nittman, H. E. Stanley, Nature 321, 663 (1986)ADSCrossRefGoogle Scholar
  14. 5.
    W. W. Mullins and R. F. Sekerka, J. Appl, Phys. 34, 323 (1963); 35, 444 (1964)ADSCrossRefGoogle Scholar
  15. 6.
    J. S. Langer and L. A. Turski, Acta Metall. 25, 1113 (1977); hydrodynamic degrees of freedom added by D. Jasnow, D. A. Nicole, and T. Ohta, Phys. Rev. A 23, 3192 (1981)CrossRefGoogle Scholar
  16. 7.
    L. P. Kadanoff, J. Stat. Phys. 39, 267 (1985)MathSciNetADSCrossRefGoogle Scholar
  17. 8.
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1499 (1981); Phys. Rev. B 27, 5685 (1983)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Mark W. DiFrancesco
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA

Personalised recommendations