Skip to main content

Experiment and Theory of the Classically Chaotic Motion of the Driven Bound Electron

  • Chapter
Nonlinear Evolution and Chaotic Phenomena

Part of the book series: NATO ASI Series ((NSSB,volume 176))

  • 170 Accesses

Abstract

The externally driven bound electron is a quantized nonlinear system, with the nonlinearity arising from the Coulomb binding force. Laboratory experiments that probe the near classical behavior of this system involve highly excited hydrogen atoms exposed to microwave fields of ionizing strength. Ionization of atoms of initial principal quantum number n0 between 30 and 90 and microwave frequencies between 6 and 18 GHz requires the absorption of the energy of some number kI of microwave photons that is the order of 100. At ionizing field strengths there is rapid stimulated photon absorption and emission underlying the time evolution of the mean value of the atom’s quantum number. The total number K of photon interactions during the microwave exposure time can be 10,000. As the quantities n0, kI, and K are all much larger than unity, it is reasonable to ask as to what extent the behavior of the system is classical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. V. Jensen, Phys. Rev. A 30, 386 (1984).

    Article  ADS  Google Scholar 

  2. A. J. Lichtenberg and M. A. Liberman, “Regular and Stochastic Motion”, New York: Springer-Verlag, 1983.

    MATH  Google Scholar 

  3. J. Parker and C. R. Stroud, Jr., Phys. Rev. Lett. 56, 716 (1986).

    Article  ADS  Google Scholar 

  4. J. E. Bayfield and S.-L. Duan, Abstracts Intern. Quantum Electronics Conf., Baltimore, Md, April 27-May 1, 1987.

    Google Scholar 

  5. H. A. Bethe and E. E. Salpeter, “Quantum Mechanics of One- and Two-Electron Atoms”, Berlin: Springer-Verlag, 1957.

    MATH  Google Scholar 

  6. P. J. Redmond, Phys. Rev. 133, B1352 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  7. R. J. Damburg and V. V. Kolosov, in “Rydberg States of Atoms and Molecules”, R. F. Stebbings and F. B. Dunning, eds., Cambridge: Cambridge Univ. Press, 1983.

    Google Scholar 

  8. J. E. Bayfield, in “Fundamental Aspects of Quantum Theory”, V. Gorini and A. Frigerio, eds., New York: Plenum Press, 1986.

    Google Scholar 

  9. J. E. Bayfield and P. M. Koch, Phys. Rev. Lett. 33, 258 (1974).

    Article  ADS  Google Scholar 

  10. J. E. Bayfield, L. D. Gardner and P. M. Koch, Phys. Rev. Lett. 39, 76 (1977).

    Article  ADS  Google Scholar 

  11. P. M. Koch, in “Fundamental Aspects of Quantum Theory”, V. Gorini and A. Frigerio, eds., New York”: Plenum Press, 1986.

    Google Scholar 

  12. J. E. Bayfield, in “Quantum Measurement and Chaos”, E. R. Pike, ed., New York: Plenum Press, 1987.

    Google Scholar 

  13. J. E. Bayfield and D. W. Sokol, unpublished work, 1987.

    Google Scholar 

  14. D. L. Shepelyansky, in “Chaotic Behavior in Quantum Systems”, G. Casati, ed., New York: Plenum Press, 1985.

    Google Scholar 

  15. J. N. Bardsley, B. Sundaram, L. A. Pinnaduwage and J. E. Bayfield, Phys. Rev. Lett. 56, 1007 (1986).

    Article  ADS  Google Scholar 

  16. R. V. Jensen, Phys. Rev. Lett. 54, 2057 (1985).

    Article  ADS  Google Scholar 

  17. R. V. Jensen, Private Communications, 1986.

    Google Scholar 

  18. M. Wilkinson, Physica 21 D, 341 (1986).

    MathSciNet  MATH  Google Scholar 

  19. G. Casati, B. V. Chirikov, D. L. Shepelyansky and I. Guarneri, Physics Reports, to be published.

    Google Scholar 

  20. H. G. Schuster, “Deterministic Chaos”, Weinheim: Physik-Verlag, 1984.

    MATH  Google Scholar 

  21. T. Geisel, in “Nonequilibrium Cooperative Phenomena in Physics and Related Fields”, M. G. Velarde, ed., New York: Plenum Press, 1984.

    Google Scholar 

  22. I. C. Percival, In “Atomic Physics 2”, G. K. Woodgate and P. G. H. Sandars, eds., New York: Plenum Press, 1971.

    Google Scholar 

  23. B. Sundaram, Ph. D. Dissertation, University of Pittsburgh, 1986, unpublished.

    Google Scholar 

  24. G. Casati, Private Communications, 1987.

    Google Scholar 

  25. R. V. Jensen, in “Atomic Physics 10,” H. Narumi and I. Shimamura, eds., Amsterdam: North-Holland, 1987.

    Google Scholar 

  26. J. N. Bardsley and M. J. Comella, J. Phys. B 19, L565 (1986).

    Article  ADS  Google Scholar 

  27. J. E. Bayfield, Comments on Atomic and Molecular Physics, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Bayfield, J.E. (1988). Experiment and Theory of the Classically Chaotic Motion of the Driven Bound Electron. In: Gallavotti, G., Zweifel, P.F. (eds) Nonlinear Evolution and Chaotic Phenomena. NATO ASI Series, vol 176. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1017-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1017-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8294-5

  • Online ISBN: 978-1-4613-1017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics