Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 176))

Abstract

In this paper we give an outline of a computer assisted proof in which we use an extended version of the Wilson-Kadanoff renormalization group scheme to get rigorous bounds on a critical exponent that is universal for a class of one parameter families F µ of hierarchical lattice systems in d = 3 dimensions. The parameter µ will be referred to as temperature. Assume that a given family F µ undergoes a phase transition at µ = µ c, then we define κ to be the exponent that describes the scaling behavior of the free energy as the temperature approaches the critical value µ c. More precisely, if U n (µ) is the free energy density coresponding to the system F µ confined to a cube of volume 2dn at temperature µ, then

$$ k = \mathop {\lim }\limits_{\mu \to {\mu _c}} {\text{ }}\frac{1}{{\log \left( {\left| \mu \right. - {\mu _c}} \right)}}\log \left( {\mathop {\lim }\limits_{n \to \infty } {\text{ }}{U_n}\left( \mu \right)} \right). $$
(1.1)

Supported by the National Science Foundation under Grant No. DMR-85-40879.

Supported by the National Science Foundation under Grants No. DMS-85-18622 and DMS-87-03539.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Koch, P. Wittwer. A Non-Gaussian Renormalization Group Fixed Point for Hierarchical Scalar Lattice Field Theories. Comm. Math. Phys. 106, 495 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J.-P. Eckmann, P. Wittwer. A Complete Proof of the Feigenbaum Conjectures. To appear in Journal of Statistical Physics.

    Google Scholar 

  3. P.M. Bleher, Ja.G. Sinai. Critical indices for Dyson’s asymptotically hierarchical models. Comm. Math. Phys. 45, 347 (1975).

    Article  MathSciNet  Google Scholar 

  4. P. Collet, J.-P. Eckmann, B. Hirsbrunner. A numerical test of Borel summability in the ε-expansion of the hierarchical model. Physics letters 71B, 385 (1977).

    ADS  Google Scholar 

  5. K.G. Wilson, J.B. Kogut. The renormalization group and the ε expansion. Phys. Report. 12C, 75 (1974).

    Article  ADS  Google Scholar 

  6. K. Wilson. Renormalization group and critical phenomena, I phase space cell analysis of critical behavior. Phys. Rev. B4, 3184 (1971).

    ADS  Google Scholar 

  7. J. Golner. Calculation of the Critical Exponent η via Renormalization-Group Recursion Formulas.

    Google Scholar 

  8. H. Koch, P. Wittwer. In preparation.

    Google Scholar 

  9. J.-P. Eckmann, H. Koch, P. Wittwer. A computer—assisted proof of universality for area-preserving maps. Memoirs AMS 47, 289 (1984).

    MathSciNet  Google Scholar 

  10. J.-P. Eckmann, P. Wittwer. Computer methods and Borel summability applied to Feigenbaum’s equation. Lecture Notes in Physics, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1985).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Koch, H., Wittwer, P. (1988). Computing Bounds on Critical Indices. In: Gallavotti, G., Zweifel, P.F. (eds) Nonlinear Evolution and Chaotic Phenomena. NATO ASI Series, vol 176. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1017-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1017-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8294-5

  • Online ISBN: 978-1-4613-1017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics