Advertisement

Superstrings pp 287-300 | Cite as

Supermembranes

  • K. S. Stelle
Part of the NATO ASI Series book series (NSSB, volume 175)

Abstract

Supersymmetric theories of extended objects with spatial dimension two or greater may prove to be more viable than has hitherto been realized. In particular, the existence of models with a local fermionic gauge invariance reopens the question whether such theories can contain massless states. In a semiclassical approximation, we show that the quantum corrections to the spin-mass relation are not inconsistent with the possibility of massless states. The analysis is carried out in a topologically-stabilized sector of the super 2-membrane theory in 11-dimensional spacetime. We also show at the classical level that this theory has a consistent truncation to the type IIA superstring in 10 dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Bergshoeff, E. Sezgin, and P.K. Townsend, Phys.Lett. 189B (1987) 75.MathSciNetADSGoogle Scholar
  2. [2]
    W. Siegel, Phys.Lett. 128B (1983) 397.ADSGoogle Scholar
  3. [3]
    J. Hughes, J. Liu, and J. Polchinski, Phys.Lett. 180B (1986) 370.MathSciNetADSGoogle Scholar
  4. [4]
    P. Fayet, Nucl. Phys. B263 (1986), 649.ADSCrossRefGoogle Scholar
  5. [5]
    P.S. Howe, private communication. This point is implicit in P.S. Howe and R.W. Tucker, J. Phys. A10 (1977) L155.ADSGoogle Scholar
  6. [6]
    M.B. Green and J.H. Schwarz, Phys. Lett. 136B (1984) 367.ADSGoogle Scholar
  7. [7]
    A. Achúcarro, J.M. Evans, P.K. Townsend and D.L. Wiltshire, University of Cambridge D.A.M.T.P. preprint (1987).Google Scholar
  8. [8]
    M. Henneaux and L. Mezincescu, Phys. Lett. 152B (1985) 340.MathSciNetADSGoogle Scholar
  9. [9]
    M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Phys. Lett. 191B (1987) 70.MathSciNetADSGoogle Scholar
  10. [10]
    S. Weinberg, in “General Relativity; An Einstein Centenary Survey”, eds. S.W. Hawking and W. Israel, Cambridge University Press (1979).Google Scholar
  11. [11]
    K. Kikkawa and M. Yamasaki, Prog.Theor.Phys. 76 (1986) 1379.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M.J. Duff, T. Inami, C.N. Pope, E. Sezgin and K.S. Stelle, Nucl. Phys. B (in press).Google Scholar
  13. [13]
    J. Hoppe, Aachen preprint PITHA 86/24; and Ph.D. Thesis, MIT (1982).Google Scholar
  14. [14]
    P.A.M. Dirac “Lectures on Quantum Mechanics”, Belfer Graduate School of Science, Yeshiva University, New York (1964).Google Scholar
  15. [15]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, ICTP preprint IC/87/255.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • K. S. Stelle
    • 1
  1. 1.The Blackett LaboratoryImperial CollegeLondonEngland

Personalised recommendations