Advertisement

Superstrings pp 169-186 | Cite as

Liouville Strings

  • Jean-Loup Gervais
Part of the NATO ASI Series book series (NSSB, volume 175)

Abstract

In 1981 Polyakov [1,2] showed that the integration measure over surfaces embedded into flat space-times of dimension D not equal to 26 ( or 10), involves an additional scalar field with an exponential potential. With this motivation I, together with A. Neveu [3–8] and A. Bilal [9–12], extensively studied this so-called Liouville dynamics and developed the associated string theories, which are of a novel type. As we shall see, two new critical values of the space-time dimension D appea, r both for the purely bosonic and for the Neveu-Schwarz-Ramond (NSR) case. They are equal to 7 and 13, and to 3 and 5 respectively. Our results possess an interesting structure which I intend to summarize, as much as posssible, in the present lecture notes.

Keywords

String Theory Partition Function Poisson Bracket Zero Mode Open String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.M. Polyakov, Phys.Lett. 103B(1981)207.MathSciNetADSGoogle Scholar
  2. [2]
    A.M. Pokyakov, Phys.Lett. 103B(1981)211.ADSGoogle Scholar
  3. [3]
    J.-L. Gervais, A. Neveu, Nucl.Phys. B199(1982)59; B209 (1982) 125.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.-L. Gervais, A. Neveu, Nucl.Phys. B209(1982)125.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.-L. Gervais, A. Neveu, Nucl.Phys. B238(1984)125; 396MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.-L. Gervais, A. Neveu, Nucl.Phys. B257[FS14](1985)59.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.-L. Gervais, A. Neveu, Phys.Lett. 151B(1985)271.MathSciNetADSGoogle Scholar
  8. [8]
    J.-L. Gervais, A. Neveu, Com.Math.Phys. 100 (1985) 15; Nucl. Phys. B264 (1986) 557Google Scholar
  9. [9]
    A. Bilal, J.-L. Gervais, Nucl.Phys. B284(1987)397.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Bilal, J.-L. Gervais, Phys.Lett. 187B(1987)39.MathSciNetADSGoogle Scholar
  11. [11]
    A. Bilal, J.-L. Gervais, Nucl.Phys. B293(1987)1.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Bilal, J.-L. Gervais, Liouville superstring and Ising model in three dimensions; preprint LPTENS 87/26.Google Scholar
  13. [13]
    L. Brink, P. di Vecchia, P. Howe, Phys.Lett. 65B(1976)471ADSGoogle Scholar
  14. [14]
    see, e.g., A.S. Schwartz Com.Math.Phys. 64(1979)233.Google Scholar
  15. [15]
    J.-L. Gervais, B. Sakita, Nucl.Phys. B34(1971)477.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Belavin, A. Polyakov, A. Zamolodchikov, Nucl.Phy.B241 (1980)333.MathSciNetADSGoogle Scholar
  17. [17]
    V.G. Kac, Proc. Int. Congress of Mathematicians, 1978 Helsinki; Lecture Notes in Physics, vol. 94 (Springer, New York, 1979) p. 441.Google Scholar
  18. [18]
    Higher Transcendental Functions, Erdélyi, Magnus, Oberhetinger, Tricomi, Bateman Project, Vol.2, McGraw—Hill 955.Google Scholar
  19. [19]
    F. Gliozzi, D. Olive, J. Scherk, Nucl.Phys.B122(1977) 253ADSCrossRefGoogle Scholar
  20. [20]
    J.F. Arvis, Nucl.Phys.B212(1983)151; B218(1983)309.MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    O. Babelon, Phys.Lett.141B(1984)353; Nucl.Phys. B258 (1985) 680.MathSciNetADSGoogle Scholar
  22. [22]
    For a pedagogical review, see P. Goddard, D. Olive, Int. J. Mod. Phys.A1 (1986) 303.MathSciNetADSGoogle Scholar
  23. [23]
    P. Goddard, W. Nahm, D. Olive, A. Schwimmer, Comm.Math. Phys.107(1986)179; A. Schwimmer in sProceedings of the 1985 Bonn Firenze Johns Hopkins meeting, World Scientific; P. Goddard, D. Olive, A. Schwimmer, Phys. Lett. 157B(1985)393MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    M. Ademollo, L. Brink, A. D’Adda, R. D’Auria, E. Napolitano, S. Sciuto, E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Pettorino, Nucl.Phys. B114 (1976) 297.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jean-Loup Gervais
    • 1
  1. 1.Physique Théorique Ecole Normale SupérieureParisFrance

Personalised recommendations