Image Analysis Problems in Astronomy

  • F. Murtagh

Abstract

The topics dealt with in this paper are as follows. Firstly, to set the scene, we briefly overview the major astronomical image processing systems, and make reference to current software engineering problems in this area. Secondly, we survey a range of pattern recognition problems, which all have classification as their central objective. These pattern recognition problems are: object searching and classification in photometry; the classifying of galaxies on the basis of their morphological shapes; and the classification of stellar spectra. Finally, we review some of the specific problems expected for Hubble Space Telescope image data.

Keywords

Dust Europe Radar Coherence Sorting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adorf, H.-M., Baade, D., and Banse, K., 1986, “Preparing analysis of Hubble Space Telescope data in Europe”, in Di Gesù et ai. (eds.), Data Analysis in Astronomy. II, Plenum Press, New York, 165: 170.Google Scholar
  2. Audouze, J. and Israël, G., 1985, The Cambridge Atlas of Astronomy, Cambridge University Press, Cambridge.Google Scholar
  3. Banse, K., Crane, P., Ounnas, Ch. and Ponz, D., 1983, “MIDAS — ESO’s interactive image processing system based on VAX/VMS”. Proceedings of the Digital Equipment Computer Users Society (Zurich, Switzerland, August/September 1983 ), 87: 91.Google Scholar
  4. Bendinelli, O, Di Iorio, A., Parmeggiani, G., and Zavatti, F., 1985, “Some clues to Hubble Space Telescope image analysis”, Astronomy and Astrophysics 153 265: 268.Google Scholar
  5. Bernat, A.P. and McGraw, J.T., 1986, “An intelligent object recognizer and classification system for astronomical use”, Preprint, Steward Observatory.Google Scholar
  6. Bragaglia, A., Ferraro, F.R., Fusi Pecci, F., Buonanno, R., Corsi, C.E., Ferraro, I., and Iannicola, G., 1987, “ST-FOC observations of globular clusters: simulations”, Journal of Astrophysics and Astronomy 8 57: 68.Google Scholar
  7. Christian, C.A., 1982, “Identification of field stars contaminating the color-magnitude diagram of the open cluster Be 21”, The Astrophysical Journal Supplement Series 49 555: 592.Google Scholar
  8. Deeming, T.J., 1963, “Stellar spectral classification”, Monthly Notices of the Royal Astronomical Society 127 493: 516.Google Scholar
  9. Di Gesù, V., Scarsi, L., Crane, P., Friedman, J.H. and Levialdi, S., 1984, Data Analysis in Astronomy, Plenum Press, New York.Google Scholar
  10. Di Gesù, V., Scarsi, L., Crane, P., Friedman, J.H. and Levialdi, S., 1986, Data Analysis in Astronomy. I I, Plenum Press, New York.Google Scholar
  11. Di Gesù and Maccarone, M.C., 1987, “Possibility functions and computational geometry: tools for the analysis of astronomical images”, Newsletter of Working Group for Modern Astronomical Methodology, No. 4; and Bulletin d’Information du Centre de Données de Strasbourg, No. 32.Google Scholar
  12. Groth, A.J., 1986, “A pattern-matching algorithm for two -dimensional coordinate lists”, The Astronomical Journal 91 1244: 1248.Google Scholar
  13. Grosb0l, P. and Ponz, D., 1985, The MIDAS table file system. In Proceedings of International Course on Data Handling in Astronomy, G. Sedmak (ed.), Trieste: Trieste Observatory.Google Scholar
  14. GSSS, 1985, Preliminary documentation, Guide Star Selection System Group, Space Telescope Science Institute, Baltimore.Google Scholar
  15. Heck, A., 1987, “UV stellar spectral classification”, in Kondo, Y., (ed.), Scientific Accomplishments of the IDE, D. Reidel, Dordrecht, pp. 121: 137.Google Scholar
  16. Jaschek, M. and Jaschek, C., 1984, “Classification of ultraviolet spectra”, in Garrison, R.F., (ed.), The MK Process and Stellar Classification, David Dunlap Observatory, Toronto, pp. 290: 301.Google Scholar
  17. Jarvis, J.F. and Tyson, J.A., 1981, “FOCAS: faint object classification and analysis system”, The Astronomical Journal 86 476: 495.Google Scholar
  18. Jenkner, H., 1983, “Astronomical and statistical algorithms used in the Space Telescope Guide Star Selection System1”, in Rolfe, E.J., (ed.), Statistical Methods in Astronomy, European Space Agency SP 201, pp. 65: 68.Google Scholar
  19. King, I.R., 1986, “Cluster photometry: present state of the art and future developments” in Di Gesu, V. et al., (eds.), Data Analysis in Astronomy II, Plenum Press, New York, pp. 17: 30.Google Scholar
  20. Kurtz, M.J., 1982, “Automatic spectral classification”, PhD thesis, Dartmouth College, New HampshireGoogle Scholar
  21. Kurtz, M.J., 1983, “Classification methods: an introductory survey”, in Statistical Methods in Astronomy, European Space Agency SP 201, pp. 47: 58.Google Scholar
  22. Kurtz, M.J., 1984, “Progress in automation techniques for MK classification”, in Garrison, R.F., (ed.), The MK Process and Stellar Classification, David Dunlap Observatory, Toronto, pp. 136: 152.Google Scholar
  23. Lauberts, A., 1986, description of suite of galaxy reduction programs, European Southern Observatory.Google Scholar
  24. Lefevre, O., Bijaoui, A., Mathez, G., Pic at. J.P. and Lelievre, G., 1986, “Electrono-graphic BV photometry of three distant clusters of galaxies”, Astronomy and Astrophysics 154 92–99.Google Scholar
  25. Lutz, R.K., 1980, “An algorithm for the real time analysis of digitised images”, The Computer Journal 23 262: 269.MathSciNetGoogle Scholar
  26. MacGillivray, H.T., Martin, R., Pratt, N.M., Reddish, V.C., Soddon, H., Alexander, L.W.G., Walker, G.S. and Williams, P.R., 1976, “A method for the automatic separation of the images of galaxies and stars from measurements made with the COSMOS machines”, Monthly Notices of the Royal Astronomical Society 176 265: 274.Google Scholar
  27. MacGillivray, H.T. and Stobie, R.S., 1984, “New results with the COSMOS machine”, Vistas in Astronomy 27 433: 475.Google Scholar
  28. MIDAS, 1987, MIDAS Manual, European Southern Observatory, Munich. Chapter 11, “Object searching and analysing commands”.Google Scholar
  29. Mihalas, D. and Binney, J., 1981, Galactic Astronomy, W.U. Freeman and Co., San Francisco.Google Scholar
  30. Murtagh, F. and Lauberts, A., 1986, “A curve matching problem in astronomy”, Pattern Recognition Letters 4 465: 469.Google Scholar
  31. Murtagh, F. and Heck, A., 1987a, Multivariate Data Analysis, 1 ). Reidel, Dordrecht.MATHGoogle Scholar
  32. Murtagh, F. and Heck, A. (eds.), 1987b, Astronomy from Large Databases: ScientiRc Objectives and Methodological Approaches, European Southern Observatory, Garching (forthcoming).Google Scholar
  33. Ochsenbein, F., 1986, “Data storage and retrieval in astronomy”, in V. Di Gesü et a,L (eds.), Data Analysis in Astronomy. II, pp. 305: 313.Google Scholar
  34. Ogawa, H., 1986, “Labelled point pattern matching by Delanney triangulation and maximal cliques”, Pattern Recognition 19 35: 40.Google Scholar
  35. Okamura,S., 1985, “Global structure of Virgo cluster galaxies1”, in Richter, O.G. and Binggeli, B., (eds.), ESQ Workshop on The Virgo Cluster of Galaxies. ESO Conference and Workshop Proceedings No. 20, pp. 201:215Google Scholar
  36. Russo, G., Richmond, A. and Albrechi, R., 1986, “The European scientific data archive for the Hubble Space Telescope”, in Di Gesu, V. et al., (eds.), Data Analysis in Astronomy, fi. pp. 193: 200.Google Scholar
  37. Sandage, A., 1975, “Classification and stellar content of galaxies obtained from direct photography”, in Sandage, A., Sandage, M. and Kristian, J., (eds.), Galaxies and the Universe, University of Chicago Press, Chicago, pp. 1: 35.Google Scholar
  38. Scarsi, L., Di Gesii, V. and Crane, P., 1987, Selected Topics on Data Analysis in Astronomy, World Scientific Publishing Co., Singapore.Google Scholar
  39. Shoshani, A. and Wong, H.K.T., 1985, Statistical and scientific database issues, IEEE Transactions on Software Engineering, SE-11, 1040: 1047.Google Scholar
  40. Stetson, P.B., 1984, DAOPHOT User’s Guide, Dominion Astrophysical Observatory, British Columbia.Google Scholar
  41. Stetson, P.B., 1987a, “DAOPHOT: a computer program for crowded-field stellar pho¬tometry”, Publications of the Astronomical Society of the Pacific (forthcoming).Google Scholar
  42. Stetson, P.B., 1987b, private communication, software description of point matching program.Google Scholar
  43. Stobie, R.S., 1980, “Application of moments to the analysis of panoramic astronomical photographs”, Applications of Digital Image Processing to Astronomy, SPIE Vol. 264, The International Society for Optical Engineering, 208: 212.Google Scholar
  44. Stobie, R.S., 1986, “The COSMOS image analyser”, Pattern Recognition Letters 4 317: 324.Google Scholar
  45. Takase, B., Kodaira, K. and Okamura, S., 1984, An Atlas of Selected Galaxies, Uni¬versity of Tokyo Press, Tokyo.Google Scholar
  46. Thanisch, P., McNally, B.V. and Robin, A., 1984, “Linear time algorithm for finding a picture’s connected components”, Image and Vision Computing 2 191: 197.Google Scholar
  47. Thonnat, M. and Berthod, M., 1984, “Automatic classification of galaxies into morphological types”, Proc. 7th International Conference on Pattern Recognition, IEEE, 844: 846.Google Scholar
  48. Thonnat, M., 1985, “Automatic morphological description of galaxies and classifica¬tion by an expert system”, INRIA Rapport de Recherche, No. 387.Google Scholar
  49. Tyson, J.A., 1984, “Galaxy counts”, in Capaccioli, M., (ed.), Astronomy with Schmidt Type Telescopes, D. Reidel, Dordrecht, 489: 498.Google Scholar
  50. Tyson, J.A. and Jarvis, J.F., 1979, “Evolution of galaxies: automated faint object counts to 24th magnitude”, The Astrophysical Journal 230 L153: L156.Google Scholar
  51. Valdes, F., 1982, “Resolution classifier”, Instrumentation in Astronomy IV, SPIE Vol. 331, The International Society for Optical Engineering, 465: 471.Google Scholar
  52. Watanabe, M., Kodaira, K. and Okamura, S., 1982, “Digital surface photometry of galaxies toward a quantitative classifier. I. 20 galaxies in the Virgo cluster”, Astrophysical Journal Supplement Series 50 1: 22.Google Scholar
  53. West, R.M. and Kruszewski, A., 1981, “Distant clusters of galaxies in the southern hemisphere”, Irish Astronomical Journal 15 25: 35.Google Scholar
  54. Whitney, C.A., 1983a, “Principal components analysis of spectral data. I. Methodol¬ogy for spectral classification”, Astronomy and Astrophysics Supplement Series 51 443: 461.Google Scholar
  55. Whitney, C.A., 1983b, “Principal components analysis of spectral data. II. Error analysis and applications to interstellar reddening, luminosity classification of M supergiants, and the analysis of VV Cephei stars”, Astronomy and Astrophysics Supplement Series 51 463: 478.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. Murtagh
    • 1
  1. 1.European Southern ObservatorySpace Telescope European Coordinating FacilityGarching-bei MünchenGermany

Personalised recommendations