Skip to main content

A Low Cost 3-D Vision System for Robotic Assembly

  • Chapter
Book cover Image Analysis and Processing II
  • 153 Accesses

Abstract

A 3-D vision system designed to enable automatic acquisition of mechanical parts in a bin by means of an assembly robot is presented. Hardware cost is kept low by using standardised parts: a microcomputer, a frame grabber, a translating table and one or two video cameras. Yet versatility is preserved and real time industrial rate is achieved. A very fast recognition method has been designed which is based on local features of the objects to be identified in the bin and metric information. Early processing steps avoid lengthy treatments such as systematic edge detection. Rather a few local features are firstly identified in an image in order to achieve a rough estimate of the correspondence between an object in the bin and a stored model of the same object. This correspondence is then confirmed and refined iteratively. Depth information is obtained by stereoscopy. An experiment involving the acquisition of snubber valves is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. J. Ayache et A. Darmon, Reconnaissance récursive et localization de formes planes partiellement visibles dans une image, 9o Colloque GRETSI, Nice 1983.

    Google Scholar 

  2. C. M. Brown, Inherent bias and noise in the Hough Transform, IEEE Trans, on PAMI-5 n°5, sept. 1983, p. 493–505.

    Google Scholar 

  3. S. Clerc, Algorithmes de localisation et de reconnaissance de pièces partiellement cachées, dans un contexte de vrac volumique. Memoire ingenieur CNAM. Belfort 1985.

    Google Scholar 

  4. P. V. C. Hough, Method and Means for Recognizing Complex Patterns, U.S. Patent 3069654, 1962.

    Google Scholar 

  5. L. Hungwen, M. A. Lavin and R. J. Le Master, Fast Hough Transform: A Hierarchical Approach, CVGIP vol. 36 (1986) pp. 139–161.

    Google Scholar 

  6. D. Marr, Vision, W. H. Freeman & Co. New York(1982).

    Google Scholar 

  7. E. G. Ramo, and J. Salminen, An experimental study of low Cost Image Workstation Architectures.in: Proc. 8th ICPR Paris Oct. 1986 pp. 34–37.

    Google Scholar 

  8. K. R. Sloan, Jr, Dynamically quantized pyramid, in Proc. 7th IJCAI, pp. 734–736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Poulenard, M., Stamon, G. (1988). A Low Cost 3-D Vision System for Robotic Assembly. In: Cantoni, V., Di GesĂ¹, V., Levialdi, S. (eds) Image Analysis and Processing II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1007-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1007-5_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8289-1

  • Online ISBN: 978-1-4613-1007-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics