Advertisement

Molecular Cloning of Olfactory-Specific Gene Products

  • Frank L. Margolis

Abstract

The specificity of cell, tissue, and organismal development and differentiation derives from selective regulation of differential gene expression along spatial and temporal coordinates. Understanding the mechanisms controlling these events is among the key problems in contemporary biology. These questions are being addressed by many laboratories applying a wide range of techniques to a variety of organisms and neural systems. Our concern here is to consider those approaches that may help identify the genes that are specifically expressed and selectively regulated in the various cells of the olfactory system. Furthermore, it is our intention to identify the products of these various genes and to determine how they may be related to the diverse functional activities of the olfactory system. Thus, the major thrust of this chapter is to consider the use of biochemical and molecular biological approaches in the study of the regulation of specific gene expression in the peripheral olfactory system.

Keywords

Olfactory Bulb Nasal Mucosa Olfactory Receptor Olfactory Epithelium Olfactory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, W. K., and Akeson, R., 1985, Identification of a cell surface glycoprotein family of olfactory receptor neurons with a monoclonal antibody, Neurosci. 5:284–296.Google Scholar
  2. Anholt, R. H., Murphy, K. M. M., Mack, G., and Snyder, S. H., 1984, Peripheral type benzodiazepine receptors in the central nervous system: Localization to olfactory nerves, J. Neurosci. 4:593–603.PubMedGoogle Scholar
  3. Anholt, R. H., Aebi, U., and Snyder, S. H., 1986,A partially purified preparation of isolated chemosensory cilia from the olfactory epithelium of the bullfrog, Rana catesbeiana, J. Neurosci. 6:1962–1969.PubMedGoogle Scholar
  4. Anholt, R. H., Mumby, S. M., Stoffers, D. A., Girard, P. R., Kuo, J, F., and Snyder, S. H:, 1987, Transduction proteins of olfactory receptor cells: Identification of guanine nucleotide binding proteins and protein kinase C, Biochemistry 26:788–795.PubMedCrossRefGoogle Scholar
  5. Baker, H., Kawano, T., Margolis, F. L., and Joh, T. H., 1983, Transneuronal regulation of tyrosine hydroxylase expression in olfactory bulb of mouse and rat, J. Neurosci. 3:69–78.PubMedGoogle Scholar
  6. Baker, H., Kawano, T., Albert, V., Joh, T. H., Reis, D. J., and Margolis, F. L., 1984, Olfactory bulb dopamine neurons survive deafferentation induced loss of tyrosine hydroxylase, Neuroscience 11:605–615.PubMedCrossRefGoogle Scholar
  7. Barber, P. C., Jensen, S., and Zimmer, J., 1982, Differentiation of neurons containing olfactory marker protein in adult rat olfactory epithelium transplanted to the anterior chamber of the eye, J. Neurosci. 7:2687–2695.CrossRefGoogle Scholar
  8. Bauer, K., Hallermayer, K., Salnikow, J., Kleinkauf, H., and Hamprecht, B., 1982a, Biosynthesis of carnosine and related peptides by glial cells in primary culture, J. Biol. Chem. 257:3593–3597.PubMedGoogle Scholar
  9. Bauer, K., Jungblut, P., and Kleinkauf, H., 1982b, Biosynthesis of carnosine and related peptides, in: Peptide Antibiotics: Biosynthesis and Functions (H. Kleinkauf and H. von Dohren, eds.), pp. 337–346, de Gruyter, Berlin.Google Scholar
  10. Bignetti, E., Cavaggioni, A., Pelosi, P., Persaud, K. C., Sorbi, R. T., and Trindelli, R., 1985, Purification and characterization of an odorant binding protein from cow nasal tissue, J. Biochem. 149:227–231.Google Scholar
  11. Brunjes, P. C., Smith-Crafts, L. K., and McCarty, R., 1985, Unilateral odor deprivation: effects on development of olfactory bulb catecholamines and behavior, Dev. Brain Res. 22:106.CrossRefGoogle Scholar
  12. Burd, G. D., Davis, B. J., Macrides, F., Grillo, M., and Margolis, F. L., 1982, Carnosine in primary afferents of the olfactory system: An autoradiographic and biochemical study, J. Neurosci. 2:244–255.PubMedGoogle Scholar
  13. Cavaggioni, A., Sorbi, R. T., Keen, J. N., Pappin, D. J. C., and Findlay, J. B. C., 1987, Homology between the pyrazine-binding protein from nasal mucosa and major urinary proteins, FEBS Lett. 212:225–228.PubMedCrossRefGoogle Scholar
  14. Chen, Z., Ophir, D., and Lancet, D., 1986a, Monoclonal antibodies to ciliary glycoproteins of frog olfactory neurons, Brain Res. 368:329–338.PubMedCrossRefGoogle Scholar
  15. Chen, Z., Pace, U., Ronen, D., and Lancet, D., 1986b, A unique glycoprotein of olfactory cilia with transmembrane receptor properties, J. Biol. Chem. 261:1299–1305.PubMedGoogle Scholar
  16. Chuah, M. I., and Farbman, A. I., 1983, Olfactory bulb increases marker protein in olfactory receptor cells, J. Neurosci. 3:2197–2205.PubMedGoogle Scholar
  17. Crush, K. G., 1970, Carnosine and related substances in animal tissues, Comp. Biochem. Physiol. 34:3–30.PubMedCrossRefGoogle Scholar
  18. Dahl, A. R., Hadley, W. M., Hahn, F. F., Benson, J. M., and McClellan, R. O., 1982, Cytochrome P-450-dependent monooxygenases in olfactory epithelium of dogs: Possible role in tumorigenicity, Science 216:57–59.PubMedCrossRefGoogle Scholar
  19. Dascal, N., Heldman, J., Gershon, E., and Lancet, D., 1986, Possible expression of odorant receptor proteins in Xenopus oocytes injected with rat olfactory epithelial mRNA, Soc. Neurosci. Abst. 12:1354.Google Scholar
  20. Farbman, A. I., 1986, Prenatal development of mammalian olfactory receptor cells, Chem. Senses 11:3–18.CrossRefGoogle Scholar
  21. Farbman, A. I., and Margolis, F. L., 1980, Olfactory marker protein during ontogeny: immunohistochemical localization, Dev. Biol. 74:205–215.PubMedCrossRefGoogle Scholar
  22. Freeze, H. H., and Varki, A., 1986, Endo-glycosidase and peptide N-glycosidase F release the great majority of total cellular N-linked oligosaccharides: Use in demonstrating that sulfated N-linked oligosaccharides are frequently found in cultured cells, Biochem. Biophys. Res. Commun. 140:967–973.PubMedCrossRefGoogle Scholar
  23. Fujita, S. C., Mori, K., Imamura, K., and Obata, K., 1985, Subclasses of olfactory receptor cells and their central projections demonstrated by a monoclonal antibody,Brain Res. 326:192–196.PubMedCrossRefGoogle Scholar
  24. Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120:97–120.CrossRefGoogle Scholar
  25. Getchell, T. V., Heck, G. L., DeSimone, J. A., Price, S., 1980, The location of olfactory receptor sites. Inferences from latency measurements, Biophys. J. 29:397–472.PubMedCrossRefGoogle Scholar
  26. Getchell, M. L., Rafols, J. A., and Getchell, T. V., 1984a, Histological and histochemical studies of the secretory components of the salamander olfactory mucosa: Effects of isoproterenol and olfactory nerve section, Anat. Rec. 208:553–565.PubMedCrossRefGoogle Scholar
  27. Getchell, T. V., Margolis, F. L., and Getchell, M. L., 1984b, Perireceptor and receptor events in vertebrate olfaction, Prog. Neurobiol. 23:317–345.PubMedCrossRefGoogle Scholar
  28. Goldstein, N. I., and Quinn, M. R., 1981, A novel cell line isolated from the murine olfactory mucosa, In Vitro 17:593–598.PubMedCrossRefGoogle Scholar
  29. Graziadei, P. P. C., 1971, The olfactory mucosa of vertebrates, in: Handbook of Sensory Physiology. Chemical Senses, Vol. 4 (L.M. Beidler, ed.), pp. 27–58, Springer-Verlag, Berlin.Google Scholar
  30. Graziadei, P. P. C., and Monti-Graziadei, G. A., 1978a, Continuous nerve cell renewal in the olfactory system, in: Handbook of Sensory Physiology. Development of Sensory Systems, Vol. 9 (M. Jacobson, ed.), pp. 55–83, Springer-Verlag, Berlin.Google Scholar
  31. Graziadei, P. P. C., and Monti-Graziadei, G. A., 1978b, The olfactory system: A model for the study of neurogenesis and axon regeneration in mammals, in: Neuronal Plasticity (C.W. Cotman, ed.), pp. 131–153, Raven, New York.Google Scholar
  32. Graziadei, P. P. C., and Monti-Graziadei, G. A., 1985, Neurogenesis and plasticity of the olfactory sensory neurons, Ann. NY Acad. Sci. 457:127–142.PubMedCrossRefGoogle Scholar
  33. Guiditta, A., Hunt, T., and Santella, L., 1986, Evidence for the presence of mRNA in the axoplasm of the squid giant axon, Neurochem. Int. 8:435–442.CrossRefGoogle Scholar
  34. Hadley, W. M., and Dahl, A. R., 1982, Cytochrome P-450 dependent monooxygenase activity in rat nasal epithelial membranes, Toxicol. Lett. 10:417–422.PubMedCrossRefGoogle Scholar
  35. Halasz, N., and Shepherd, G. M., 1983, Neurochemistry of the vertebrate olfactory bulb, Neuroscience 10:579–619.PubMedCrossRefGoogle Scholar
  36. Hempstead, J. L., and Morgan, J. I., 1983,Monoclonal antibodies to the rat olfactory sustentacular cell, Brain Res. 288:289–295.PubMedCrossRefGoogle Scholar
  37. Hempstead, J. L., and Morgan, J. I., 1985a, A panel of monoclonal antibodies to the rat olfactory epithelium, J. Neurosci. 5:438–449.PubMedGoogle Scholar
  38. Hempstead, J. L., and Morgan, J. I., 1985b, Monoclonal antibodies reveal novel aspects of the biochemistry and organization of olfactory neurons following unilateral olfactory bulbectomy, J. Neurosci. 5:2382–2387.PubMedGoogle Scholar
  39. Hokfelt, T., and Terenius, L., 1987, More on receptor mismatch, Trends Neurosci. 10:22–23.CrossRefGoogle Scholar
  40. Horinishi, H., Grillo, M., and Margolis, F. L., 1978, Purification and characterization of carnosine synthetase from mouse olfactory bulb, J. Neurochem. 31:909–919.PubMedCrossRefGoogle Scholar
  41. Huque, T., and Bruch, R. C., 1986, Odorant- and guanine nucleotide-stimulated phosphoinositide turnover in olfactory cilia, Biochem. Biophys. Res. Commun. 137:36–42.PubMedCrossRefGoogle Scholar
  42. Jones, D. T., and Reed, R. R., 1987, Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium, J. Biol. Chem. 262:14241–14249.PubMedGoogle Scholar
  43. Kawano, T., and Margolis, F. L., 1982, Transsynaptic regulation of olfactory bulb catecholamines in mice and rats, J. Neurochem. 39:342–348.PubMedCrossRefGoogle Scholar
  44. Kessel, R.G., and Kardon, R.H. (eds.), 1979, Tissues and Organs. A Text-Adas of Scanning Electron Microscopy, W. H. Freeman, San Francisco.Google Scholar
  45. Khew-Goodall, Y. S., Goren, T., Grillo, M., and Margolis, F. L., 1987, Identification and cloning of olfactory specific mRNAs (Abstr.) J. Neurochem. 48(Suppl.):S144.Google Scholar
  46. Kream, R. M., Davis, B. J., Kawano, T., Margolis, F. L., and Macrides, F., 1984, Substance P and catecholaminergic expression in neurons of the hamster main olfactory bulb, J. Comp. Neurol. 222:140–154.PubMedCrossRefGoogle Scholar
  47. Kream, R. M., and Margolis, F. L., 1983, Olfactory marker protein: Turnover and transport in normal and regenerating neurons, J. Neurosci. 4:868–879.Google Scholar
  48. Lancet, D., 1986, Vertebrate olfactory reception, Annu. Rev. Neurosci. 9:329–355.PubMedCrossRefGoogle Scholar
  49. Lee, K-H., Wells, R. G., and Reed, R. R., 1987, Isolation of an olfactory cDNA: Similarity to retinol-binding protein suggests a role in olfaction, Science 235:1053–1056.PubMedCrossRefGoogle Scholar
  50. Leff, S. E., and Rosenfeld, M. G., 1986, Complex transcriptional units: Diversity in gene expression by alternative RNA processing, Annu. Rev. Biochem. 55:1091–1117.PubMedCrossRefGoogle Scholar
  51. Levitt, M., 1978, Conformational preferences of amino acids in globular proteins, Biochemistry 17:4277–4285.PubMedCrossRefGoogle Scholar
  52. Lifson, S., and Sanders, C., 1979,Antiparallel and parallel (β-strands differ in amino acid residue preferences, Nature (Lond.) 282:109–111.CrossRefGoogle Scholar
  53. Lipman, D. J., and Pearson, W. R., 1985, Rapid and sensitive protein similarity searches, Science 227:1435–1441.PubMedCrossRefGoogle Scholar
  54. Macrides, F., Davis, B. J., 1983, The olfactory bulb, in Chemical Neuroanatomy (P.C. Emson, ed.), pp. 391–426, Raven, New York.Google Scholar
  55. Mandel, G., and Goodman, R. H., 1987, Using the brain to screen cloned genes, Trends Neurosci. 10:101— 104.CrossRefGoogle Scholar
  56. Margolis, F. 1., 1972, A brain protein unique to the olfactory bulb Proc. Natl. Acad. Sci. USA 69:1221–1224.PubMedCrossRefGoogle Scholar
  57. Margolis, F. L., 1980a, A marker protein for the olfactory chemoreceptor neuron, in: Proteins of the Nervous System (R.A. Bradshaw and D. Schneider, eds.), pp. 59–84, Raven, New York.Google Scholar
  58. Margolis, F. L., 1980b, Carnosine: An olfactory neuropeptide, in: Role of Peptides in Neuronal Function (J.L. Barker and T. Smith, eds.), pp. 545–572, Dekker, New York.Google Scholar
  59. Margolis, F. L., 1974, Carnosine in the primary olfactory pathway, Science 184:909–911.PubMedCrossRefGoogle Scholar
  60. Margolis, F. L., 1981, Neurotransmitter biochemistry of the mammalian olfactory bulb, in: Biochemistry of Taste and Olfaction (R.H. Cagan and M.R. Kare, eds.), pp. 369–394, Academic, New York.Google Scholar
  61. Margolis, F. L., 1985, Olfactory marker protein: from PAGE band to cDNA clone, Trends Neurosci. 8:542–546.CrossRefGoogle Scholar
  62. Margolis, F. L., and Grillo, M., 1984a, Carnosine, homocarnosine and anserine in vertebrate retinas, Neurochem. Int. 6:207–209.PubMedCrossRefGoogle Scholar
  63. Margolis, F. L., and Grillo, M., 1984b,Inherited differences in mouse kidney carnosinase activity, Biochem. Genet. 22:444–451.CrossRefGoogle Scholar
  64. Margolis, F. L., Grillo, M., Grannot-Reisfeld, N., and Farbman, A. I., 1983, Purification, characterization and immunocytochemical localization of mouse kidney carnosinase, Biochim. Biophys. Acta 744:237–248.PubMedCrossRefGoogle Scholar
  65. Margolis, F. L., Grillo, M., Kawano, T., and Farbman, A. I., 1985a, Carnosine synthesis in olfactory tissue during ontogeny: effect of exogenous β-alanine, J. Neurochem. 44:1459–1464.PubMedCrossRefGoogle Scholar
  66. Margolis, F. L., Grillo, M., Hempstead, J., and Morgan, J. I., 1987, Monoclonal antibodies to mammalian carnosine synthetase, J. Neurochem. 48:593–600.PubMedCrossRefGoogle Scholar
  67. Margolis, F. L., Sydor, W., Teitelbaum, Z., Blacher, R., Grillo, M., Rogers, K., Sun, R., and Gubler, U., 1985b, Molecular biological approaches to the olfactory system: Olfactory marker protein as a model, Chem. Senses 10:163–174.CrossRefGoogle Scholar
  68. Maue, R. A., and Dionne, V. E., 1984, Ion channel activity in isolated murine olfactory receptor neurons, Soc. Neurosci. Abst. 10:655.Google Scholar
  69. Menco, B. P. M., 1980, Quanlitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat, and dog, Cell Tissue Res. 211:5–29.PubMedGoogle Scholar
  70. Miragall, F., and Monti-Graziadei, G. A., 1982, Experimental studies on the olfactory marker protein. II. Appearance of the olfactory marker protein during differentiation of the olfactory sensory neurons of mouse: an immunohistochemical and autoradiographic study, Brain Res. 239:245–250.PubMedCrossRefGoogle Scholar
  71. Monti-Graziadei, G. A., 1983, Experimental studies on the olfactory marker protein. III. The olfactory marker protein in the olfactory neuroepithelium lacking connections with the forebrain, Brain Res. 262:303–308.PubMedCrossRefGoogle Scholar
  72. Monti-Graziadei, G. A., Stanley, R. S., and Graziadei, P. P. C., 1980, The olfactory marker protein in the olfactory system of mouse during development, Neuroscience 5:1239–1252.CrossRefGoogle Scholar
  73. Mori, K., 1987, Monoclonal antibodies (2C5 and 4C9) against lactoseries carbohydrates identify subsets of olfactory and vomeronasal receptor cells and their axons in the rabbit, Brain Res. 408:215–221.PubMedCrossRefGoogle Scholar
  74. Mori, K., Fujita, S. C., Imamura, K., and Obata, K., 1985, Immunohistochemical study of subclasses of olfactory nerve fibers and their projections to the olfactory bulb in the rabbit, J. Comp. Neurol. 242:214–229.PubMedCrossRefGoogle Scholar
  75. Nadi, N. S., Head, R., Grillo, M., Hempstead, J., Grannot-Reisfeld, N., and Margolis, F. L., 1981, Chemical deafferentation of the olfactory bulb; plasticity of the levels of tyrosine hydroxylase, dopamine and norepinephrine, Brain Res. 213:365–371.PubMedCrossRefGoogle Scholar
  76. Nakamura, T., and Gold, G. H., 1987, A cyclic nucleotide-gated conductance in olfactory receptor cilia, Nature (Lond.) 325:442–444.CrossRefGoogle Scholar
  77. Nakashima, T., Kimmelman, C. P., and Snow, J. P., 1984, Structure of human fetal and adult olfactory neuroepithelium, Arch. Otolaryngol. (Stockh.) 110:641–646.Google Scholar
  78. O’Farrell, P., 1975, High-resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250:4007–4021.PubMedGoogle Scholar
  79. Pace, U., Hanski, U. E., Salomon, Y., and Lancet, D., 1985, Odorant-sensitive adenylate cyclase may mediate olfactory reception, Nature (Lond.) 316:255–258.CrossRefGoogle Scholar
  80. Peabody, D. S., and Berg, P., 1986, Termination-reinitiation occurs in the translation of mammalian cell mRNAs, Mol. Cell Biol. 6:2695–2703.PubMedGoogle Scholar
  81. Pevsner, J., Trifiletti, R. R., Strittmatter, S. M., and Synder, S. H., 1985, Isolation and characterization of an olfactory receptor protein for odorant pyrazines, Proc. Natl. Acad. Sci. USA 82:3050–3054.PubMedCrossRefGoogle Scholar
  82. Pfister, C., Chabre, M., Plouet, J., Tuyen, V. V., De Kozak, Y., Faure, J. P., and Kuhn, H., 1985, Retinal S antigen identified as the 48k protein regulating light-dependent phosphodiesterase in rods, Science 228:891–893.PubMedCrossRefGoogle Scholar
  83. Reed, C. J., Lock, E. A., and DeMatteis, F., 1986, NADPH: cytochrome P-450 reductase in olfactory epithelium,Biochem. J. 240:585–592.PubMedGoogle Scholar
  84. Rhein, L. D., and Cagan, R. H., 1980, Biochemical studies of olfaction: Isolation characterization and odorant binding activity of cilia from rainbow trout olfactory rosettes. Proc. Natl. Acad. Sci. USA 77:4412–4416.PubMedCrossRefGoogle Scholar
  85. Rochel, S., and Margolis, F. L., 1980, The response of ornithine decarboxylase during neuronal degeneration and regeneration in olfactory epithelium, J. Neurochem. 35:850–860.PubMedCrossRefGoogle Scholar
  86. Rochel, S., and Margolis, F. L., 1982, Carnosine release from olfactory bulb synaptosomes is calciumdependent and depolarization-stimulated, J. Neurochem. 38:1505–1514.PubMedCrossRefGoogle Scholar
  87. Rogers, K., Grillo, M., Poonian, M., and Margolis, F. L., 1985, Olfactory neuron-specific protein is translated from a large poly(A) + mRNA, Proc. Natl. Acad. Sci. USA 82:5218–5222.PubMedCrossRefGoogle Scholar
  88. Rogers, K., Dasgupta, P., Gubler, U., Grillo, M., Khew-Goodall, Y. S., and Margolis, F. L., 1987, Molecular cloning and sequencing of a cDNA for rat OMP, Proc. Natl. Acad. Sci. USA 84:1704–1708.PubMedCrossRefGoogle Scholar
  89. Sakai, M., Yoshida, M., Karasawa, N., Teramura, M., Ueda, H., and Nagatsu, I., 1987, Carnosine-like immunoreactivity in the primary olfactory neuron of the rat, Experientia 298:300.Google Scholar
  90. Schneiderman, A. M., Matsumoto, S. G., and Hildebrand, J. G., 1982, Trans-sexually grafted antennae influence development of sexually dimorphic neurons in moth brain, Nature (Lond.) 298:844–846.CrossRefGoogle Scholar
  91. Schubert, D., Stallcup, W., LaCorbiere, M., Kidokoro, Y., and Orgel, L., 1985, The ontogeny of electrically excitable cells in cultured olfactory epithelium, Proc. Natl. Acad. Sci. USA 82:7782–7786.PubMedCrossRefGoogle Scholar
  92. Schwartz, J. P., and Costa, E., 1986, Hybridization approaches to the study of neuropeptides, Annu. Rev. Neurosci. 9:277–304.PubMedCrossRefGoogle Scholar
  93. Shepherd, G. M., 1972, Synaptic Organization of the mammalian olfactory bulb, Physiol. Rev. 52:864–917.PubMedGoogle Scholar
  94. Shepherd, G. M., 1977, The olfactory bulb: a simple system in the mammalian brain, in: Handbook of Physiology, Vol. 1 (J.M. Brookhart, V.B. Mountcastle, E.R. Kandel, and S.R. Geiger, eds.), pp. 945–968, American Physiological Society, Bethesda, Maryland.Google Scholar
  95. Simmons, P. A., and Getchell, T. V., 1981, Neurogenesis in olfactory epithelium: loss and recovery of transepithelial voltage transients following olfactory nerve section, J. Neurophysiol. 45:516–528.PubMedGoogle Scholar
  96. Skaper, S. D., Das, S., and Marshall, F. D., 1973, Some properties of a homocarnosine-carnosine synthetase isolated from rat brain, J. Neurochem. 21:1429–1445.PubMedCrossRefGoogle Scholar
  97. Skene, J. H. P., Jacobson, R. D., Snipes, G. J., McGuire, C. B., Nordn, J. J., and Freeman, A., 1986, A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes, Science 233:783–785.PubMedCrossRefGoogle Scholar
  98. Sklar, P. B., Anholt, R. H., and Snyder, S. H., 1986, The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants, J. Biol. Chem. 261:15538–15543.PubMedGoogle Scholar
  99. Sydor, W., Teitelbaum, Blacher, Z., Sun, R., Benz, W., and Margolis, F. L., 1986, Amino acid sequence of a unique neuronal protein: Rat olfactory marker protein, Arch. Biochem. Biophys. 249:351–362.PubMedCrossRefGoogle Scholar
  100. Tamaki, N., Morioka, S., Ikeda, T., Harada, M., and Hama, T., 1980, Biosynthesis and degradation of carnosine and turn-over rate of its constituent amino acids in rats, J. Nutr. Sci. Vitaminol. (Tokyo) 26:127–139.CrossRefGoogle Scholar
  101. Trotier, D., and MacLead, P., 1986, cAMP and cGMP open channels and depolarize olfactory receptor cells, Chem. Senses 11:674.Google Scholar
  102. Vinnikov, Y. A., 1982, Evolution of receptor cells, Mol. Biol. Biochem. Biophys. Ser. 34:1–141.Google Scholar
  103. Vodyanoy, V., and Murphy, R. B., 1983, Single-channel fluctuations in bimolecular lipid membranes induced by rat olfactory epithelial homogenates, Science 220:717–719.PubMedCrossRefGoogle Scholar
  104. Voigt, J. M., Guengerich, F. P., and Baron, J., 1985, Localization of a cytochrome P-450 isozyme (cytochrome P-450 PB-B) and NADPH-cytochrome P-450 reductase in rat nasal mucosa, Cancer Lett. 27:241–247.PubMedCrossRefGoogle Scholar
  105. Wang, R. T., and Halpern, M., 1982, Neurogenesis in the vomeronasal epithelium of adult garter snakes. 1. Degeneration of bipolar neurons and proliferation of undifferentiated cells following experimental vomeronasal axotomy, Brain Res. 237:23–39.PubMedCrossRefGoogle Scholar
  106. Wensley, C. H., Fung, B. P., and Chikaraishi, D. M., 1986, Cloning of neural specific genes from the olfactory epithelium and developing rat brain, Sco. Neurosci. Abst. 12:212.Google Scholar
  107. Zwiers, H., Verhaagen, J., van Dongen, C. J., de Graan, P. N. E., and Gispen, W. H., 1985, Resolution of rat brain synaptic phosphoprotein B-50 into multiple forms by two-dimensional electrophoresis: Evidence for multisite phosphorylation, J. Neurochem. 44:1083–1090.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Frank L. Margolis
    • 1
  1. 1.Department of Neuroscience, Roche Institute of Molecular BiologyRoche Research CenterNutleyUSA

Personalised recommendations