Molecular Genetics of Human Salivary Proteins and Their Polymorphisms

  • Edwin A. Azen
  • Nobuyo Maeda
Part of the Advances in Human Genetics book series (AHUG, volume 17)


The whole human saliva is a complex fluid that is produced by specialized salivary glands. The three major salivary glands (submandibular, parotid, and sublingual) produce most of the saliva, but the small buccal glands also contribute a minor amount. The human saliva is an easily obtained source of many proteins that are useful for genetic analysis (Boackle and Suddick, 1980; Mason and Chisholm, 1975; Vining and McGinley, 1986). In particular, the parotid saliva component (collected with the Curby cup) has advantages over whole saliva, including more uniform composition, less enzymatic degradation of proteins, and absence of contamination with bacteria or food. Stimulated parotid saliva [150–264 mg/100 ml total protein (Daniels and Newbrun, 1966)] contains 25–35 proteins, which can be stained in acid polyacrylamide or SDS gels with Coomassie brilliant blue R-250. Amylase and proline-rich proteins (PRPs) constitute most of the proteins. In particular, the PRPs represent about two-thirds of the parotid salivary proteins and show numerous polymorphisms (Bennick, 1982, 1987; Azen, 1988). Many enzymes, hormones, growth factors, immunoglobulins, serum components, and other proteins (as the B12-binding R proteins) can also be detected in saliva.


Salivary Protein Human Saliva Salivary Amylase Protein Polymorphism Parotid Saliva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, M., Barrett, A. J., Salvesen, G., and Grubb, A., 1986, Isolation of six proteinase inhibitors from human urine, J. Biol. Chem. 261:11282–11289.PubMedGoogle Scholar
  2. Allen, R. H., 1975, Human vitamin B12 transport proteins, in: Progress in Hematology, Vol. 9 (E. B. Brown, ed.), pp. 57–84, Grune and Stratton, New York.Google Scholar
  3. Anderson, L. C., and Mandel, I. D., 1982, Salivary protein polymorphisms in caries-resistant adults, J. Dent. Res. 61:1167–1168.PubMedGoogle Scholar
  4. Anderson, L. C., Kauffman, D. L., and Keller, P. J., 1982a, Identification of Pm and PmS human parotid salivary proteins as basic proline-rich proteins, Biochem. Genet. 20:1131–1137.PubMedGoogle Scholar
  5. Anderson, L. C., Lamberts, B. L., and Bruton, W. F. J., 1982b, Salivary protein polymorphisms in caries-free and caries-active adults, J. Dent. Res. 61:393–396.PubMedGoogle Scholar
  6. Azen, E. A., 1972, Genetic polymorphism of basic proteins from parotid saliva, Science 176:673–674.PubMedGoogle Scholar
  7. Azen, E. A., 1973, Properties of salivary basic proteins showing polymorphism, Biochem. Genet. 9:69–86.PubMedGoogle Scholar
  8. Azen, E. A., 1977, Salivary peroxidase (SAPX): Genetic modification and relationship to the proline-rich (Pr) and acidic (Pa) proteins, Biochem. Genet. 15:9–29.PubMedGoogle Scholar
  9. Azen, E. A., 1978a, Genetic protein polymorphisms in human saliva: An interpretive review, Biochem. Genet. 16:79–99.PubMedGoogle Scholar
  10. Azen, E. A., 1978b, Phosphorylation of proline-rich, double band, acidic and post-Pb proteins of human saliva, Arch. Oral Biol. 23:1173–1176.PubMedGoogle Scholar
  11. Azen, E. A., 1978c, Salivary peroxidase activity and thiocyanate concentration in human subjects with genetic variants of salivary peroxidase, Arch. Oral Biol. 23:801–805.PubMedGoogle Scholar
  12. Azen, E. A., 1985, Genetic variation of salivary peroxidase, in: The Lactoperoxidase System, Chemistry and Biologic Significance (K. M. Pruitt and J. O. Tenovuo, eds.), pp. 89–97, Marcel Dekker, New York.Google Scholar
  13. Azen, E. A., 1988, Genetic protein polymorphisms of human saliva in: Clinical Chemistry of Human Saliva (J. Tenovuo, ed.), CRC Press, Boca Raton, Florida (in press).Google Scholar
  14. Azen, E. A., and Denniston, C. L., 1974, Genetic polymorphism of human salivary proline-rich proteins: Further genetic analysis, Biochem. Genet. 12:109–120.PubMedGoogle Scholar
  15. Azen, E. A., and Denniston, C., 1979, Genetic polymorphism of vitamin B12 binding (R) proteins of human saliva detected by isoelectric focusing, Biochem. Genet. 17:909–920.PubMedGoogle Scholar
  16. Azen, E. A., and Denniston, C., 1980, Polymorphism of Ps (parotid size variant) and detection of a protein (PmS) related to the Pm (parotid middle band) system with genetic linkage of Ps and Pm to Gl, Db and Pr genetic determinants, Biochem. Genet. 18:483–501.PubMedGoogle Scholar
  17. Azen, E. A., and Denniston, C., 1981, Genetic polymorphism of PIF (parotid isoelectric focusing variant) proteins with linkage to the PPP (parotid proline-rich protein) gene complex, Biochem. Genet. 19:475–485.PubMedGoogle Scholar
  18. Azen, E. A., and Oppenheim, F. G., 1973, Genetic polymorphism of proline-rich human salivary proteins, Science 180:1067–1069.PubMedGoogle Scholar
  19. Azen, E. A., and Yu, P. L., 1984A, Genetic polymorphism of Con 1 and Con 2 salivary proteins detected by immunologic and concanavalin A reactions on nitrocellulose with linkage of Con 1 and Con 2 genes to the SPC (salivary protein gene complex), Biochem. Genet. 22:1–19.PubMedGoogle Scholar
  20. Azen, E. A., and Yu, P. L., 1984b, Genetic polymorphisms of Pe and Po salivary proteins with probable linkage of their genes to the salivary protein gene complex (SPC), Biochem. Genet. 22:1065–1080.PubMedGoogle Scholar
  21. Azen, E. A., Leutenegger, W., and Peters, E. H., 1978, Evolutionary and dietary aspects of salivary basic (Pb) and post Pb (PPb) proteins in anthropoid primates, Nature 273:775–778.PubMedGoogle Scholar
  22. Azen, E. A., Hurley, C. K., and Denniston, C., 1979, Genetic polymorphism of the major parotid salivary glycoprotein (Gl) with linkage to the genes for Pr, Db and Pa, Biochem. Genet. 17:257–279.PubMedGoogle Scholar
  23. Azen, E. A., Lyons, K. M., McGonigal, T., Barrett, H. L., Clements, L. S., Maeda, N., Vanin, E. F., Carlson, D. M., and Smithies, O., 1984, Clones from the human gene complex coding for salivary proline-rich proteins, Proc. Natl. Acad. Sci. USA 81:5561–5565.PubMedGoogle Scholar
  24. Azen, E. A., Goodman, P. A., and Lalley, P. A., 1985, Human salivary proline-rich protein genes on chromosomal 12, Am. J. Hum. Genet. 37:418–424.PubMedGoogle Scholar
  25. Azen, E. A., Lush, E. I., and Taylor, B., 1986, Close linkage of mouse genes for salivary proline-rich proteins and taste, Trends Genet. 2:199–200.Google Scholar
  26. Azen, E. A., Kim, H.-S., Goodman, P., Flynn, S., and Maeda, N., 1987, Alleles at the PRH1 locus coding for the human salivary acidic proline-rich proteins (PRPs) Pa, Db and PIF, Am. J. Hum. Genet. 41:1035–1047.PubMedGoogle Scholar
  27. Balakrishnan, C. R., and Ashton, G. C., 1974, Polymorphism of human salivary proteins, Am. J. Hum. Genet. 26:145–153.PubMedGoogle Scholar
  28. Balekjian, A. Y., and Longton, R. W., 1973, Histones isolated from human parotid fluid, Biochem. Biophys. Res. Commun. 50:676–682.PubMedGoogle Scholar
  29. Baum, B. J., Bird, J. L., Millar, D. B., and Longton, R. W., 1976, Studies on histidine-rich polypeptides from human parotid saliva, Arch. Biochem. Biophys. 177:427–436s.PubMedGoogle Scholar
  30. Bennick, A., 1977, Chemical and physical characterization of a phosphoprotein, protein C, from human saliva and comparison with a related protein A, Biochem. J. 163:229–239.PubMedGoogle Scholar
  31. Benniek, A., 1982, Salivary proline-rich proteins, Mol. Cell Biochem. 45:83–99.Google Scholar
  32. Bennick, A., 1987, Structural and genetic aspects of proline-rich proteins, J. Dent. Res. 66:457–461.PubMedGoogle Scholar
  33. Boackle, J., and Suddick, R. P., 1980, Salivary proteins and oral health, in: The Biologic Basis of Dental Caries (R. E. Morhart and J. M. Navia, eds.), pp. 113–131, Harper and Row, Hagerstown, Maryland.Google Scholar
  34. Boettcher, B., and de la Lande, F. A., 1969, Electrophoresis of human saliva and identification of inherited variants of amylase isoenzymes, Aust. J. Exp. Biol. Med. Sci. 47:97–103.PubMedGoogle Scholar
  35. Brizn, J., Popovic, T., and Turk, V., 1984, Human cystatin, a new protein inhibitor of cysteine proteinases, Biochem. Biophys. Res. Commun. 118:103–109.Google Scholar
  36. Carmel, R., and Herbert, V., 1969, Deficiency of vitamin B12-binding a-globulin in two brothers, Blood 33:1–12.PubMedGoogle Scholar
  37. Daiger, S. P., Labowe, M. L., Parsons, M., Wang, L., and Cavalli-Sforza, L. L., 1978, Detection of genetic variation with radioactive ligands. III. Genetic polymorphism of transcobalamin II in human plasma, Am. J. Hum. Genet. 30:202–214.PubMedGoogle Scholar
  38. Daniels, T. E., and Newbrun, E., 1966, Measurement of protein and free and bound carbohydrate in human parotid saliva, Arch. Oral Biol. 11:1171–1180.PubMedGoogle Scholar
  39. De Soyza, K., 1978, Polymorphism of human salivary amylase, a preliminary communication, Hum. Genet. 45:189–192.PubMedGoogle Scholar
  40. Eckersall, P. D., and Beeley, J. A., 1981, Genetic analysis of human salivary a-amylase isoenzymes by isoelectric focusing, Biochem. Genet. 19:1055–1062.PubMedGoogle Scholar
  41. Fráter-Schroeder, M., Hitzig, W. H., and Butler, R., 1979, Studies of transcobalamin (TC). I. Detection of TCII isoproteins in human serum, Blood 53:193–203.Google Scholar
  42. Friedman, E. D., Merritt, A. D., and Rivas, M. L., 1975, Genetic studies of human acidic salivary protein (Pa), Am. J. Hum. Genet. 27:292–303.PubMedGoogle Scholar
  43. Ghiso, J., Jensson, O., and Frangione, B., 1986, Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of icelandic type is a variant of γ-trace basic protein (cystatin C), Proc. Natl. Acad. Sci. USA 83:2974–2978.PubMedGoogle Scholar
  44. Goodman, P. A., and Karn, R. C., 1983, Human parotid size polymorphism (Ps): Characterization of the two allelic products, Ps 1 and Ps 2 by limited proteolysis, Biochem. Genet. 21:405–416.PubMedGoogle Scholar
  45. Goodman, P. A., Yu, P. L., Azen, E. A., and Karn, R. C., 1985, The human salivary protein complex (SPC): A large block of related genes, Am. J. Hum. Genet. 37:785–797.PubMedGoogle Scholar
  46. Grubb, A., Löfberg, H., 1982, Human γ-trace, a basic microprotein: Amino acid sequence and presence in adenohypophesis, Proc. Natl. Acad. Sci. USA 79:3024–3027.PubMedGoogle Scholar
  47. Gumucio, D. L., Meisler, M. H., and Kidd, J. R., 1985, Detection of two RFLPS near the human salivary amylase gene on the short arm of human chromosome 1, Am. J. Hum. Genet. 37:A155.Google Scholar
  48. Gumucio, D. L., Wiebauer, K., Caldwell, R. M., Samuelson, L. C., and Meisler, M. H., 1988, II. Concerted evolution of the human amylase genes, Mol. Cell Biol. 8:1197–1205.PubMedGoogle Scholar
  49. Hay, D. I., 1975, Fractionation of human parotid salivary proteins and the isolation of a histidine-rich acidic peptide which shows high affinity for hydroxyapatite surfaces, Arch. Oral Biol. 20:553–558.PubMedGoogle Scholar
  50. Hay, D. I., and Oppenheim, F. G., 1974, The isolation from human parotid saliva of a further group of proline-rich proteins, Arch. Oral Biol. 19:627–632.PubMedGoogle Scholar
  51. Hay, D. I., Smith, D. J., Schluckebier, S. K., and Moreno, E. C., 1984, Relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva, J. Dent. Res. 63:857–863.PubMedGoogle Scholar
  52. Henkin, R. I., Lippoldt, R. E., Belstad, J., Wolf, R. O., Lum, C. K. L., and Edelhoch, H., 1978, Fractionation of human parotid saliva proteins, J. Biol. Chem. 253:7556–7565.PubMedGoogle Scholar
  53. Holbrook, I. B., and Molan, P. C., 1975, The identification of a peptide in human parotid saliva particularly active in enhancing the glycolytic activity of the salivary microorganisms, Biochem. J. 149:489–492.PubMedGoogle Scholar
  54. Ikemoto, S., Minaguchi, K., Suzuki, K., and Tomita, K., 1977, New genetic marker in human parotid saliva (Pm), Science 197:378–379.PubMedGoogle Scholar
  55. Ikemoto, S., Minaguchi, K., Tomita, T., and Suzuki, K., 1979, A variant protein in human parotid saliva detected by SDS polyaerylamide gel electrophoresis and its inheritance, Ann. Hum. Genet. 43:11–14.PubMedGoogle Scholar
  56. Ikemoto, S., Hinohara, H., Tsuchida, S., and Tomita, K., 1985, Phenotype and gene frequencies of acid phosphatase (s-AcP) in the human parotid saliva, Hum. Genet. 71:30–32.PubMedGoogle Scholar
  57. Ikemoto, S., Tsuchida, S., Hinohara, H., Nishiumi, E., Kajii, E., Nagai, K., Tomita, A., and Huang, D. Y., 1987, Further evidence for phenotypes and gene frequencies of nine salivary polymorphisms in Japanese population, Forensic Sci. Int. 35:119–123.PubMedGoogle Scholar
  58. Isemura, S., Saitoh, E., and Sanada, K., 1980, The amino acid sequence of a salivary proline-rich peptide, P-C, and its relation to a salivary proline-rich phosphoprotein, protein C, J. Biochem. 87:1071–1077.PubMedGoogle Scholar
  59. Isemura, S., Saitoh, E., and Sanada, K., 1982, Fractionation and characterization of basic proline-rich peptides of human parotid saliva and the amino acid sequence of proline-rich peptide P-E, J. Biochem. 91:2067–2075.PubMedGoogle Scholar
  60. Isemura, S., Saitoh, E., and Sanada, K., 1984, Isolation and amino acid sequence of SAP-1, an acidic protein of human whole saliva, and sequence homology with human γ-trace, J. Biochem. 96:489–498.PubMedGoogle Scholar
  61. Isemura, S., Saitoh, E., and Sanada, K., 1986a, Characterization of a new cysteine proteinase inhibitor of human saliva, cystatin SN, which is immunologically related to cystatin S, FEBS Lett. 198:145–149.PubMedGoogle Scholar
  62. Isemura, S., Saitoh, E., Sanada, K., Isemura, M., and Ito, S., 1986b, Cystatin S and the related cysteine proteinase inhibitors in human saliva, in:Cysteine Proteinases and Their Inhibitors (V. Turk, ed.), pp. 497–505, de Gruyter, Berlin.Google Scholar
  63. Isemura, S., Saitoh, E., Sanada, K., Isemura, M., and Ito, S., 1986c, Cysteine proteinases of human saliva, Acta Neurol. Scand. 73:317.Google Scholar
  64. Ishizaki, K., Noda, A., Ikenaga, M., Omoto, K., Nakamura, Y., and Matsubara, K., 1985, Restriction fragment length polymorphism detected by human salivary amylase cDNA, Hum. Genet. 71:261–262.PubMedGoogle Scholar
  65. Ito, S., Suzuki, T., Momotsu, T., Isemura, S., Saitoh, E., Sanada, K., and Shibata, A., 1985, Presence of salivary protein C and salivary peptide P-C-like immunoreactivity in the laryngo-tracheo-bronchial glands, Acta Endocrinol. 108: 108–134.PubMedGoogle Scholar
  66. Kamarýt, J., and Laxová;, R., 1966, Amylase heterogeneity variants in man, Humangenetik 3:41–45.PubMedGoogle Scholar
  67. Karan, R. C., Friedman, R. D., and Merritt, A. D., 1979, Human salivary proline-rich (Pr) proteins: A post translational derivation of the phenotypes, Biochem. Genet. 17:1061–1077.Google Scholar
  68. Karn, R. C., Goodman, P. A., and Yu, P. L., 1985, Description of a genetic polymorphism of a human proline-rich salivary protein, Pc, and its relationship to other proteins in the salivary protein complex (SPC), Biochem. Genet. 23:37–51.PubMedGoogle Scholar
  69. Kauffman, D. L., and Keller, P. J., 1979, The basic-proline-rich proteins in human parotid saliva from a single subject, Arch. Oral Biol. 24:249–256.PubMedGoogle Scholar
  70. Kauffman, D., Wong, R., Bennick, A., and Keller, Fj., 1982, Basic proline-rich proteins from human parotid saliva: Complete covalent structure of protein IB-9 and partial structure of protein IB-6, members of a polymorphic pair, Biochemistry 21:6558–6562.PubMedGoogle Scholar
  71. Kauffman, D., Hofmann, T., Bennick, A., and Keller, P., 1986, Basic proline-rich proteins from parotid saliva: Complete covalent structures of proteins IB-I and IB-6, Biochemistry 25:2387–2392.PubMedGoogle Scholar
  72. Kim, H.-S., and Maeda, N., 1986, Structure of two HaeIII-type genes in the human salivary proline-rich protein multigene family, J. Biol. Chem. 261:6712–6718.PubMedGoogle Scholar
  73. Kitamura, N., Kitagawa, H., Fukushima, D., Takagaki, Y., Takashi, M., and Nakanishi, S., 1985, Structural organization of the human kininogen gene and a model for its evolution, J. Biol. Chem. 260:8610–8617.PubMedGoogle Scholar
  74. Kühnl, P., and Tischberger, H., 1980, Amylase, polymorphism of human parotid saliva: Detection of a new allele Amy 5 by isoelectric focusing and Amy1 population data from Germany, Electrophoresis 1:186–190.Google Scholar
  75. Levine, M. J., Weill, J. C., and Ellison, S. A., 1969, The isolation and analysis of a glycoprotein from parotid saliva, Biochim. Biophys. Acta 188:165–167.PubMedGoogle Scholar
  76. Lyons, K. M., Stein, J. H., and Smithies, O., 1988a, Length polymorphisms in human proline-rich protein genes generated by intragenic unequal crossing over, Genetics (in press).Google Scholar
  77. Lyons, K. M., Azen, E. A., Goodman, P. A., and Smithies, O., 1988b, Many protein products from a few loci: Assignment of human salivary proline-rich proteins to specific loci, Genetics (in press).Google Scholar
  78. Lyons, K. M., Kim H. S., Saitoh, E., and Smithies, O., submitted, Nucleotide sequences and evolution of the PRB3 and PRB4 genes from the human proline-rich protein multigene family (manuscript submitted).Google Scholar
  79. MacKay, B. J., Pollock, J. J., Iacono, V. J., and Baum, B. J., 1984a, Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva, Infect. Immun. 44:688–694.PubMedGoogle Scholar
  80. MacKay, B. J., Denepitiya, L., Iacono, V. J., Krost, S. B., and Pollock, J. J., 1984b, Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans, Infect. Immun. 44:695–701.Google Scholar
  81. Maeda, N., 1985, Inheritance of human salivary proline-rich proteins: A reinterpretation in terms of six loci forming two subfamilies, Biochem. Genet. 23:455–464.PubMedGoogle Scholar
  82. Maeda, N., Kim, H.-S., Azen, E. A., and Smithies, O., 1985, Differential RNA splicing and post translational cleavages in the proline-rich protein gene system, J. Biol. Chem. 260:11123–11130.PubMedGoogle Scholar
  83. Mamula, P. W., Heerema, N. A., Palmer, C. G., Lyons, K. M., and Kara, R. C., 1985, Localization of the human salivary proteins complex (SPC) to chromosome band -12pl3.2, Cytogenet. Cell Genet. 39:279–284.PubMedGoogle Scholar
  84. Mandel, I. D., and Bennick, A., 1983, Quantitation of human salivary acidic proline-rich proteins in oral disease, J. Dent. Res. 62:943–945.PubMedGoogle Scholar
  85. Mason, D. K., and Chisholm, D. M., 1975, Salivary glands and their secretions, in: Salivary Glands in Health and Disease (D. K. Mason and D. M. Chisholm, eds.), pp. 3–37, Saunders, London.Google Scholar
  86. McKusick, V., 1986, Mendelian Inheritance in Man. Categories of Autosomal Dominant, Autosomal Recessive, andX-Linked Phenotypes 7th ed., Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
  87. Mehansho, H., Hagerman, A., Clements, S., Butler, L., Rogler, J., and Carlson, D. M., 1983, Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels, Proc. Natl. Acad. Sci. USA 80:3948–3952.PubMedGoogle Scholar
  88. Mehansho, H., Clements, S., Sheares, B. T., Smith, S., and Carlson, D. M., 1985, Induction of proline-rich glycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins, J. Biol. Chem. 260:4418–4423.PubMedGoogle Scholar
  89. Mahansho, H., Butler, L. G., and Carlson, D. M., 1987, Dietary tannins and salivary proline-rich proteins: Interactions, induction and defense mechanisms, in: Annual Review of Nutrition Vol. 7 (R. E. Olson, E. Beutler, and H. P. Broquist, eds.), pp. 423–440, Annual Reviews, Palo Alto, California.Google Scholar
  90. Meisler, M., and Gumucio, D., 1986, Salivary amylase: Evolution and tissue-specific expression; and Pancreatic amylase: Molecular genetics and evolution, in: Molecular and Cellular Basis of Digestion (P. Desnuelle, H. Sjöström, and O. Norén, eds.), pp. 249–263 and 459–466, Elsevier, Amsterdam.Google Scholar
  91. Merritt, A. D., and Kam, R. C., 1977, Human a-amylases, in: Advances in Human Genetics Vol. 8 (H. Harris and K. Hirschhorn, eds.), pp. 135–234, Plenum Press, New York.Google Scholar
  92. Minaguchi, K., and Suzuki, K., 1981, Frequencies of salivary genetic marker systems in Caucasians with an emphasis on Pm and Ph systems, Forensic Sci. Int. 17:5–7.PubMedGoogle Scholar
  93. Minaguchi, K., Ikemoto, S., and Suzuki, K., 1981a, Isolation and partial characterization of a polymorphic protein (Pm) in human parotid saliva, Biochem. Genet. 19:617–621.PubMedGoogle Scholar
  94. Minaguchi, K., and Suzuki, K., 1981, Frequencies of salivary genetic marker systems in Caucasians with an emphasis on Pm and Ph systems, Forensic Sci. Int. 17:5–7.PubMedGoogle Scholar
  95. Minaguchi, K., Takaesu, Y., Tsutsumi, T., and Suzuki, K., 1981a, Studies of genetic markers in human saliva (VII) frequencies of the major parotid salivary glycoprotein (Gl) system in a Japanese population, Bull. Tokyo Dent. Coll. 22:1–6.Google Scholar
  96. Minaguchi, K., Shirotani, T., and Suzuki, K., 1988, New variants of Ps salivary polymorphic proteins, Ann. Hum. Genet. 52:11–16.PubMedGoogle Scholar
  97. Minakato, K., and Asano, M., 1984, New protein inhibitors of cysteine proteinases in human saliva and salivary glands, Hoppe-Seyler’s Z. Physiol. Chem. 365:399–403.Google Scholar
  98. Muenzer, J., Bildstein, C., Gleason, M., and Carlson, D. M., 1979, Purification of proline-rich proteins from parotid glands of isoproterenol-treated rats, J. Biol. Chem. 254:5623–5628.PubMedGoogle Scholar
  99. Müller-Esterl, W., Fritz, H., Kellerman, J., Lottopeich, F., Machleidt, W., and Turk, V., 1986, The mammalian cysteine proteinase inhibitors. Structural diversity andevolutionary origin, in: Cysteine Proteinases and Their Inhibitors (V. Turk, ed.), pp. 369–392, de Gruyter, Berlin.Google Scholar
  100. Nakamura, Y., Ogawa, M., Nishide, T., Emi, M., Kosaki, G., Himeno, S., and Matsubara, K., 1984, Sequences of cDNA for human salivary and pancreatic a-amylases, Gene 28:263–270.PubMedGoogle Scholar
  101. Nishide, T., Emi, M., Nakamura, Y., and Matsubara, K., 1986b, Corrected sequences of cDNAs for human salivary and pancreatic a-amylases, Gene 50:371–372.Google Scholar
  102. Nishide, T., Nakamura, Y., Emi, M., Yamamoto, T., Ogawa, M., Mori, T., and Matsubara, K., 1986b, Primary structure of human salivary a-amylase gene, Gene 41:299–304.PubMedGoogle Scholar
  103. Noraini, I., Tan, S. G., Gan, Y. Y., and Teng, Y. S., 1980, Salivary peroxidase, Pm and Ph protein polymorphisms in Malaysians, Hum. Genet. 56:205–207.PubMedGoogle Scholar
  104. O’Connell, P. O., Lathrop, G. M., Law, M., Leppert, M., Nakamura, Y., Hoff, M., Kumlin, E., Thomas, W., Eisner, T., Ballard, L., Goodman, P., Azen, E., Sadler, J. E., Cai, G. Y., Lalovel, J. M., and White, R., 1987, A primary linkage map for human chromosome 12, Genomics 1:93–102.PubMedGoogle Scholar
  105. Oppenheim, F. G., Hay, D. I., and Franzblau, C., 1971, Proline-rich proteins from human parotid saliva. I. Isolation and partial characterization, Biochemistry 10:4233–4238.PubMedGoogle Scholar
  106. Oppenheim, F. G., Yang, Y. C., Diamond, R. D., Hyslop, D., Offner, G. D., and Troxler, R. F., 1986, The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion, J. Biol. Chem. 261:1177–1182.PubMedGoogle Scholar
  107. Peters, E. H., and Azen, E. A., 1977, Isolation and partial characterization of human parotid basic proteins, Biochem. Genet. 15:925–946.PubMedGoogle Scholar
  108. Peters, E. H., Goodfriend, T., and Azen, E. A., 1977, Human Pb, human post-Pb and non human primate Pb proteins: Immunological and biochemical relationships, Biochem. Genet. 15:947–962.PubMedGoogle Scholar
  109. Pollock, I. J., Denepitiya, L., MacKay, B. J., and Iacono, V., 1984, Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans, Infect. Immun. 44:702–707.PubMedGoogle Scholar
  110. Pronk, J. C., 1977, A genetic variant of human salivary amylase detected by isoelectric focusing, in: Electrofocusing and Isotachophoresis (R. J. Radola and D. Graesslin, eds.), pp. 359–366, de Gruyter, Berlin.Google Scholar
  111. Pronk, J. C., and Frants, R. R., 1979, New genetic variants of parotid salivary amylase, Hum. Hered. 29:181–186.PubMedGoogle Scholar
  112. Pronk, J. C., Frants, R. R., Jansen, W., Ericksson, A. W., and Tonino, G. J. M., 1982, Evidence for duplication of the human salivary amylase gene, Hum. Genet. 60:32–35.PubMedGoogle Scholar
  113. Pronk, J. C., Jansen, W. M., Pronk, A., Christian, F. A. M., Frants, R. R., and Erickson, A. W., 1984, Salivary protein polymorphism in Kenya: Evidence for a new Amy 1 allele, Hum. Hered. 34:212–286.PubMedGoogle Scholar
  114. Sabatini, L. M., Carlock, L. R., Johnson, G. W., and Azen, E. A., 1987, cDNA cloning and chromosomal localization of a gene (4qll-13) for statherin, a regulator of calcium in saliva, Am. J. Hum. Genet. 41:1048–1060.PubMedGoogle Scholar
  115. Saitoh, E., Isemura, S., and Sanada, K., 1983a, Complete amino acid sequence of a basic proline-rich peptide P-F, from human parotid saliva, J. Biochem. 93:883–888.PubMedGoogle Scholar
  116. Saitoh, E., Isemura, S., and Sanada, K., 1983a, Further fractionation of basic proline-rich peptides from human parotid saliva and complete amino acid sequence of basic proline-rich peptide P-H, J. Biochem. 94:1991–1999.PubMedGoogle Scholar
  117. Saitoh, E., Isemura, S., and Sanada, K., 1983c, Complete amino acid sequence of a basic proline-rich peptide, P-D, from human parotid saliva, J. Biochem. 93:495–502.PubMedGoogle Scholar
  118. Saitoh, E., Kim, H.-S., Smithies, O., and Maeda, N., 1987, Human cysteine-proteinase inhibitors: Nucleotide sequence analysis of three members of the cystatin gene family, Gene 61:329–338.PubMedGoogle Scholar
  119. Salvesen, G., Parkes, C., Rawlings, N. D., Brown, M. A., and Barrett, A. J., 1986, Cystatin-like domains of LMW-kininogens, and speculations on the origins of cystatins, in: Cysteine Proteinases and Their Inhibitors (V. Turk, ed.), pp. 413–428, de Gruyter, Berlin.Google Scholar
  120. Schlesinger, D. H., and Hay, D. I., 1977, The complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva, J. Biol. Chem. 252:1689–1695.PubMedGoogle Scholar
  121. Shimomura, H., Kanai, Y., and Sanada, K., 1983, Amino acid sequences of glycopeptides obtained from basic proline-rich glycoprotein of human parotid saliva, J. Biochem. 93:857–863.PubMedGoogle Scholar
  122. Sung, M., and Smithies, O., 1969, Differential elution of histones from gel-trapped nuclei, Biopolymers 7:39–58.PubMedGoogle Scholar
  123. Tan, S. G., 1976, Human salivary esterases: Genetic studies, Hum. Hered. 26:207–216.PubMedGoogle Scholar
  124. Tan, S. G., and Ashton, G. C., 1976, An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva, Hum. Hered. 26:113–123.PubMedGoogle Scholar
  125. Tan, S. G., and Ashton, G. C., 1976b, Saliva acid phosphatases: Genetic studies, Hum. Hered. 26:81–89.PubMedGoogle Scholar
  126. Tan, S. G., and Teng, Y. S., 1979, Human saliva as a source of genetic markers. I. Techniques, Hum. Hered. 29:69–76.PubMedGoogle Scholar
  127. Teng, Y. S., and Tan, S. G., 1979, Human saliva as a source of genetic markers. II. Genetic interpretations and possible utilizations, Hum. Hered. 29:129–133.PubMedGoogle Scholar
  128. Tenovuo, J., and Pruitt, K. M., 1984, Relationship of the human salivary peroxidase system to oral health, J. Oral Pathol. 13:573–584.PubMedGoogle Scholar
  129. Tricoli, J. V., and Shows, T. B., 1984, Regional assignment of human amylase (AMY) to p22 - p21 of chromosome 1, Somat. Cell. Mol. Genet. 10:205–210.PubMedGoogle Scholar
  130. Vining, R. F., and McGinley, R. A., 1986, Hormones in saliva, in: CRC Critical Reviews in Clinical Laboratory Sciences, Vol. 23 (J. Batsakis and J. Savory, eds.), pp. 95–146, CRC Press, Boca Raton, Florida.Google Scholar
  131. Warner, T. F., and Azen, E. A., 1984, Proline-rich proteins are present in serous cells of the submucosal glands of the respiratory tract, Am. Rev. Respir. Dis. 130:115–118.PubMedGoogle Scholar
  132. Warner, T. F., and Azen, E. A., 1988, Tannins, salivary proline-rich proteins and esophageal cancer, Med. Hypotheses 26(2).Google Scholar
  133. Warner, T. F., Seo, I. S., Azen, E. A., Hafez, G. R., and Zarling, T. A., 1985, Immunocytochemistry of acinic carcinomas and mixed tumors of salivary glands, Cancer 56:2221–2227.PubMedGoogle Scholar
  134. Wise, R. J., Karn, R. C., Larsen, S. H., Hodes, M. E., Gardell, S. J., and Rutter, W. J., 1984, A complementary DNA sequence that predicts a human pancreatic amylase primary structure consistent with the electrophoretic mobility of the common isozyme, Amy2A, Mol. Biol. Med. 2:307–322.PubMedGoogle Scholar
  135. Wong, R. S. C., and Bennick, A., 1980, The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related salivary protein A, J. Biol. Chem. 255:5943–5948.PubMedGoogle Scholar
  136. Wong, R. S. C., Hoffmann, T., and Bennick, A., 1979, The complete primary structure of a proline-rich phosphoprotein from human saliva, J. Biol. Chem. 254:4800–4808.PubMedGoogle Scholar
  137. Wong, R. S. C., Madapallimattam, G., and Bennick, A., 1983, The role of glandular kallikrein in the formation of a salivary proline-rich protein by cleavage of a single bond in salivary protein C, Biochem. J. 211:35–44.PubMedGoogle Scholar
  138. Yang, S. Y., Coleman, P. S., and Dupont, B., 1982, The biochemical and genetic basis for the microheterogeneity of human R-type vitamin BI2 binding proteins, Blood 59:747–755.PubMedGoogle Scholar
  139. Young, R. A., Hagenbuchle, O., and Schibler, U., 1981, A single mouse amylase gene specifies two different tissue-specific RNAs, Cell 23:451–458.PubMedGoogle Scholar
  140. Yu, P.-L., Kara, R. C., Merritt, A. D., Azen, E. A., and Conneally, P. M., 1980, Linkage relationships and multipoint mapping of the human parotid salivary proteins (Pr, Pa, Db), Am. J. Hum. Genet. 32:555–563.PubMedGoogle Scholar
  141. Yu, P.-L., Bixler, D., Goodman, P. A., Azen, E. A., and Kara, R. C., 1986, Human parotid proline-rich proteins: Correlation of genetic polymorphisms to dental caries, Genet. Epidemiol. 3:147–152.PubMedGoogle Scholar
  142. Zabel, B. U., Naylor, S. L., Sakaguchi, A. Y., Bell, G. I., and Shows, T. B., 1983, High-resolution chromosomal localization of human genes for amylase proopiomelanocortin, somatostatin, and a DNA fragment (D3S1) by in situ hybridization, Proc. Natl. Acad. Sci. USA 80:6932–6936.PubMedGoogle Scholar
  143. Ziemer, M. A., Mason, A., and Carlson, D. M., 1982, Cell free translations of proline-rich protein mRNAs, J. Biol. Chem. 256:11176–11180.Google Scholar
  144. Ziemer, M. A., Swain, W. F., Rutter, W. J., Clements, S., Ann, D. K., and Carlson, D. M., 1984, Nucleotide sequence analysis of a proline-rich protein cDNA and peptide homologies of rat and human proline-rich proteins J. Biol. Chem 259:10475–10480.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Edwin A. Azen
    • 1
  • Nobuyo Maeda
    • 2
  1. 1.Laboratory of Genetics and Department of MedicineUniversity of WisconsinMadisonUSA
  2. 2.Laboratory of GeneticsUniversity of WisconsinMadisonUSA

Personalised recommendations