UV-Visible Reflectance Spectroscopy

  • Dieter M. Kolb

Abstract

Within the last two decades, interfacial electrochemistry has become very much an integral part of modern surface science.(1–6) In the search for a microscopic description of the electrochemical double layer, which obviously is necessary for a detailed understanding of electrode processes, electrochemists have increasingly recognized the potential power of surface science concepts and techniques for obtaining information which would complement the thermodynamic description derived from classical electrochemical methods. As a consequence, (1) new, nonelectrochemical techniques have been introduced and combined with the traditional electrochemical methods, (2) atomically well-defined single-crystal surfaces have been increasingly used as electrodes rather than polycrystalline material, and (3) structure-sensitive methods such as low-energy electron diffraction (LEED), developed for surface characterization under ultrahigh-vacuum conditions, have been employed to study electrode surfaces before and after electrochemical experiments.(4,5) In addition, atomistic concepts for interactions at surfaces have been introduced from surface science into electrochemistry to modify or replace the macroscopic and highly phenomenological models of the electrochemical double layer, which were developed from the analysis of thermodynamic data.

Keywords

Quartz Attenuation Foam Platinum Rubber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. E. Furtak, K. L. Kliewer, and D. W. Lynch (eds.), Non-Traditional Approaches to the Study of the Solid-Electrolyte Interface, Surface Sci., Vol. 101 (1980).Google Scholar
  2. 2.
    W. N. Hansen, D. M. Kolb, and D. W. Lynch (eds.), Electronic and Molecular Structure of Electrode-Electrolyte Interfaces, J. Electroanal Chem., Vol. 150 (1983).Google Scholar
  3. 3.
    H. Genscher and D. M. Kolb (eds.), Structure and Dynamics of Solid/Electrolyte Interfaces, Ber. Bunsenges. Phys. Chem. 91, 262–496 (1987).Google Scholar
  4. 4.
    E. Yeager, A. Homa, B. D. Cahan, and D. Scherson, J. Vac. Sci. Technol. 20, 628 (1982).Google Scholar
  5. 5.
    D. M. Kolb, J. Vac. Sci. Technol. A4, 1294 (1986).Google Scholar
  6. 6.
    W. Schmickler, J. Electroanal. Chem. 150, 19 (1983).Google Scholar
  7. 7.
    D. F. A. Koch and D. E. Scaife, J. Electrochem. Soc. 113, 302 (1966).Google Scholar
  8. 8.
    J. Feinleib, Phys. Rev. Lett. 16, 1200 (1966).Google Scholar
  9. 9.
    T. Takamura, K. Takamura, W. Nippe, and E. Yeager, J. Electrochem. Soc. 117, 626 (1970).Google Scholar
  10. 10.
    T. Takamura, Y. Sato, and K. Takamura, J. Electroanal. Chem. 41, 31 (1973).Google Scholar
  11. 11.
    J. D. E. Mclntyre and D. E. Aspnes, Surface Sci. 24, 417 (1971).Google Scholar
  12. 12.
    J. D. E. Mclntyre and D. M. Kolb, Symp. Faraday Soc. 4, 99 (1970).Google Scholar
  13. 13.
    D. M. Kolb and J. D. E. Mclntyre, Surface Sci. 28, 321 (1971).Google Scholar
  14. 14.
    T. E. Furtak and D. W. Lynch, Phys. Rev. Lett. 35, 960 (1975).Google Scholar
  15. 15.
    J. D. E. Mclntyre, in: Advances in Electrochemistry and Electrochemical Engineering (R. H. Muller, ed.), Vol. 9, p. 61, Wiley, New York (1973).Google Scholar
  16. 16.
    F. Wooten, Optical Properties of Solids, Academic Press, New York (1972).Google Scholar
  17. 17.
    R. E. Hummel, Optische Eigenschaften von Metallen und Legierungen, Springer-Verlag, Berlin (1971).Google Scholar
  18. 18.
    J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).Google Scholar
  19. 19.
    See, e.g., M. Cardona, in: Optical Properties of Solids (S. Nudelman and S. S. Mitra, eds.), p. 137, Plenum Press, New York (1969).Google Scholar
  20. 20.
    P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).Google Scholar
  21. 21.
    M. Cardona, Modulation Spectroscopy, Academic Press, New York (1969).Google Scholar
  22. See, e.g., Ref. 16, p. 61.Google Scholar
  23. 23.
    H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts in Modern Physics, Vol. 88, Springer, Berlin (1980).Google Scholar
  24. 24.
    H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).Google Scholar
  25. 25.
    W. R. Hunter, J. Opt. Soc. Am. 55, 1197 (1965).Google Scholar
  26. 26.
    W. N. Hansen, J. Opt. Soc. Am. 58, 380 (1968).Google Scholar
  27. 27.
    J. K. Sass and H. Laucht, J. Electroanal Chem. 67, 260 (1976).Google Scholar
  28. 28.
    See, e.g., P. J. Hyde, C. J. Maggiore, A. Redondo, S. Srinivasan, and S. Gottesfeld, J. Electroanal. Chem. 186, 267 (1985).Google Scholar
  29. 29.
    D. M. Kolb, J. Phys. (Paris) 38, C5–167 (1977).Google Scholar
  30. 30.
    D. M. Kolb, D. Leutloff, and M. Przasnyski, Surface Sci. 47, 622 (1975).Google Scholar
  31. 31.
    T. Takamura, K. Takamura, and F. Watanabe, Surface Sci. 44, 93 (1974).Google Scholar
  32. 32.
    R. Kötz, Thesis, Technical University, Berlin (1978).Google Scholar
  33. 33.
    E. D. Palik (ed.), Handbook of Optical Constants of Solids, Academic Press, Orlando (1985).Google Scholar
  34. 34.
    W. J. Plieth and K. Naegele, Surface Sci. 50, 53 (1975).Google Scholar
  35. 35.
    K. Naegele and W. J. Plieth, Surface Sci. 50, 64 (1975).Google Scholar
  36. 36.
    See, e.g., Ref. 33, pp. 56–58 and references cited therein.Google Scholar
  37. 37.
    K. Naegele and W. J. Plieth, Surface Sci. 61, 504 (1976).Google Scholar
  38. 38.
    W. J. Plieth and K. Naegele, Surface Sci. 64, 484 (1977).Google Scholar
  39. 39.
    W. J. Plieth, Dechema Monographie 90, 69 (1981).Google Scholar
  40. 40.
    M. J. Dignam, M. Moskovits, and R. W. Stobie, Trans. Faraday Soc. 67, 3306 (1971).Google Scholar
  41. 41.
    W. J. Plieth, Isr. J. Chem. 18, 105 (1979).Google Scholar
  42. 42.
    A. J. Bennett and D. Penn, Phys. Rev. B 11, 3644 (1975).Google Scholar
  43. 43.
    F. Forstmann and R. R. Gerhardts, in: Festkörperprobleme (Adv. in Solid State Phys.), Vol. XXII, p. 291, Vieweg, Braunschweig (1982).Google Scholar
  44. 44.
    K. L. Kliewer, Surface Sci. 101, 57 (1980).Google Scholar
  45. 45.
    P. J. Feibelman, Progr. Surface Sci. 12, 287 (1982).Google Scholar
  46. 46.
    R. Kötz, D. M. Kolb, and F. Forstmann, Surface Sci. 91, 489 (1980).Google Scholar
  47. 47.
    R. Kötz and D. M. Kolb, Surface Sci. 97, 575 (1980).Google Scholar
  48. 48.
    F. Forstmann, K. Kempa, and D. M. Kolb, J. Electroanal. Chem. 150, 241 (1983).Google Scholar
  49. 49.
    F. Forstmann and H. Stenschke, Phys. Rev. Lett. 38, 1365 (1977); Phys. Rev. B 17, 1489 (1978).Google Scholar
  50. 50.
    F. Forstmann and R. R. Gerhardts, Metal Optics near the Plasma Frequency, Springer Tracts in Modern Physics, Vol. 109, Springer, Berlin (1986).Google Scholar
  51. 51.
    K. L. Kliewer, Phys. Rev. B 14, 1412 (1976).Google Scholar
  52. 52.
    H. Petersen and S. B. M. Hagström, Phys. Rev. Lett. 41, 1314 (1978).Google Scholar
  53. 53.
    K. Kempa and F. Forstmann, Surface Sci. 129, 516 (1983).Google Scholar
  54. 54.
    D. E. Aspnes and N. Bottka, in:Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 9, p. 457, Academic Press, New York (1972).Google Scholar
  55. 55.
    A. Bewick and A. M. Tuxford, Symp. Faraday Soc. 4, 114 (1970).Google Scholar
  56. 56.
    F. T. Wagner and P. N. Ross, J Electroanal. Chem. 150, 141 (1983).Google Scholar
  57. 57.
    D. M. Kolb and R. Kötz, Surface Sci. 64, 698 (1977).Google Scholar
  58. 58.
    J. D. E. Mclntyre, in: Optical Properties of Solids—New Developments (B. O. Seraphin, ed.), p. 555, North-Holland, Amsterdam (1976).Google Scholar
  59. 59.
    See, e.g., R. Dornhaus, M. B. Long, R. E. Benner, and R. K. Chang, Surface Sci. 93, 240 (1980).Google Scholar
  60. 60.
    D. M. Kolb and H. Gerischer, Electrochim. Acta 18, 987 (1973).Google Scholar
  61. 61.
    T. Takamura, K. Takamura, and E. Yeager, J. Electroanal. Chem. 29, 279 (1971).Google Scholar
  62. 62.
    D. Dickertmann, F. D. Koppitz, and J. W. Schultze, Electrochim. Acta 21, 967 (1976).Google Scholar
  63. 63.
    P. O. Nilsson and D. E. Eastman, Phys. Scri. 8, 113 (1973).Google Scholar
  64. 64.
    D. M. Kolb and R. Kötz, Surface Sci. 64, 96 (1977).Google Scholar
  65. 65.
    M. S. Zei, Y. Nakai, G. Lehmpfuhl, and D. M. Kolb, J. Electroanal. Chem. 150, 201 (1983).Google Scholar
  66. 66.
    J. O’M. Bockris, M. A. Devanathan, and K. Müller, Proc. R. Soc. Ser. A 274, 55 (1963).Google Scholar
  67. 67.
    N. D. Lang and W. Kohn, Phys. Rev. B 7, 3541 (1973).Google Scholar
  68. 68.
    W. N. Hansen and A. Prostak, Phys. Rev. 174, 500 (1968).Google Scholar
  69. 69.
    J. D. E. Mclntyre, Surface Sci. 37, 658 (1973).Google Scholar
  70. 70.
    R. Kötz and D. M. Kolb, Z. Phys. Chem. N.F. 112, 69 (1978).Google Scholar
  71. 71.
    D. M. Kolb, J. Phys. (Paris) 44, C10–137 (1983).Google Scholar
  72. 72.
    D. W. Lynch, Surface Sci. 103, 289 (1981).Google Scholar
  73. 73.
    T. E. Furtak and D. W. Lynch, J. Electroanal. Chem. 79, 1 (1977).Google Scholar
  74. C. N. van Huong, C. Hinnen, J. LeCoeur, and R. Parsons, J. Electroanal. Chem. 92, 239 (1978). Note that the crystallographic directions for Au(110) have been interchanged.Google Scholar
  75. 75.
    R. Kofman, R. Garrigos, and P. Cheyssac, Surface Sci. 101, 231 (1980).Google Scholar
  76. 76.
    R. Kötz and H. J. Lewerenz, Surface Sci. 78, L233 (1978).Google Scholar
  77. 77.
    R. Smoluchowski, Phys. Rev. 60, 661 (1941).Google Scholar
  78. 78.
    J. D. E. Mclntyre and W. F. Peck, Faraday Discuss. Chem. Soc. 56, 122 (1973).Google Scholar
  79. 79.
    K. Kempa, Surface Sci. 157, L323 (1985).Google Scholar
  80. 80.
    F. Chao and M. Costa, Surface Sci. 135, 497 (1983).Google Scholar
  81. 81.
    W. Shockley, Phys. Rev. 56, 317 (1939).Google Scholar
  82. 82.
    See, e.g., G. Chiarotti, S. Nannarone, R. Pastore, and P. Chiaradia, Phys. Rev. B 4, 3398 (1971).Google Scholar
  83. 83.
    K. M. Ho, B. N. Harmon, and S. H. Liu, Phys. Rev. Lett. 44, 1531 (1980).Google Scholar
  84. 84.
    D. M. Kolb, W. Boeck, K. M. Ho, and S. H. Liu, Phys. Rev. Lett. 47, 1921 (1981).Google Scholar
  85. 85.
    K. M. Ho, C. L. Fu, S. H. Liu, D. M. Kolb, and G. Piazza, J. Electroanal Chem. 150, 235 (1983).Google Scholar
  86. 86.
    S. H. Liu, C. Hinnen, C. N. van Huong, N. R. DeTacconi, and K. M. Ho, J. Electroanal. Chem. 176, 325 (1984).Google Scholar
  87. 87.
    A. Goldmann, V. Dose, and G. Borstel, Phys. Rev. B 32, 1971 (1985).Google Scholar
  88. 88.
    W. Jacob, V. Dose, U. Kolac, T. Fauster, and A. Goldmann, Z. Physik B63, 459 (1986).Google Scholar
  89. 89.
    W. Boeck and D. M. Kolb, Surface Sci. 118, 613 (1982).Google Scholar
  90. 90.
    R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).Google Scholar
  91. 91.
    P. Heimann, H. Neddermeyer, and H. F. Roloff, J. Phys. C 10, L17 (1977).Google Scholar
  92. 92.
    B. Reihl, R. R. Schlittler, and H. Neff, Phys. Rev. Lett. 52, 1826 (1984).Google Scholar
  93. 93.
    B. Reihl, K. H. Frank, and R. R. Schlittler, Phys. Rev. B 30, 7328 (1984).Google Scholar
  94. 94.
    G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985).Google Scholar
  95. 95.
    See, e.g., J. Billmann and A. Otto, Solid State Commun. 44, 105 (1982).Google Scholar
  96. G. Piazza and D. M. Kolb, unpublished.Google Scholar
  97. 97.
    S. Trasatti, J. Electroanal. Chem. 33, 351 (1971).Google Scholar
  98. 98.
    K. M. Ho, private communication.Google Scholar
  99. 99.
    See, e.g., G. A. Somorjai, Chemistry in Two Dimensions, Cornell University, Ithaca, New York (1981), pp. 143–146.Google Scholar
  100. 100.
    M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos, and G. A. Somorjai, Surface Sci. 103, 189, 218 (1981).Google Scholar
  101. 101.
    D. M. Kolb and J. Schneider, Surface Sci. 162, 764 (1985).Google Scholar
  102. 102.
    D. M. Kolb and J. Schneider, Electrochim. Acta 31, 929 (1986).Google Scholar
  103. 103.
    A. Otto, in: Optical Properties of Solids—New Developments (B. O. Seraphin, ed.), p. 677, North-Holland, Amsterdam (1976).Google Scholar
  104. 104.
    H. Raether, in: Physics of Thin Films (G. Hass, ed.), Vol. 9, p. 145, Academic Press, New York (1977).Google Scholar
  105. 105.
    D. M. Kolb, in: Surface Polaritons (V. M. Agranovich and D. L. Mills, eds.), p. 299, North-Holland, Amsterdam (1982).Google Scholar
  106. 106.
    A. Otto, Z. Physik 216, 398 (1968).Google Scholar
  107. 107.
    E. Kretschmann, Z. Physik 241, 313 (1971).Google Scholar
  108. 108.
    H. Raether, in: Surface Polaritons (V. M. Agranovich and D. L. Mills, eds.), p. 331, North-Holland, Amsterdam (1982).Google Scholar
  109. 109.
    E. Kretschmann, Opt. Commun. 26, 41 (1978).Google Scholar
  110. 110.
    A. Tadjeddine, D. M. Kolb, and R. Kötz, Surface Sci. 101, 277 (1980).Google Scholar
  111. 111.
    A. Tadjeddine and D. M. Kolb, unpublished.Google Scholar
  112. 112.
    R. Kötz, D. M. Kolb, and J. K. Sass, Surface Sci. 69, 359 (1977).Google Scholar
  113. 113.
    F. Abeles, T. Lopez-Rios, and A. Tadjeddine, Solid State Commun. 16, 843 (1975).Google Scholar
  114. 114.
    A. Tadjeddine and D. M. Kolb, Proc. 4th Int. Conf on Solid Surfaces, Cannes, 1980, Vol. I, p. 615, Supplement “Le Vide, les Couches Minces” No. 201.Google Scholar
  115. 115.
    A. Otto, Appl Surface Sci. 6, 309 (1980).Google Scholar
  116. 116.
    M. Moskovits, Solid State Commun. 32, 59 (1979).Google Scholar
  117. 117.
    D. M. Kolb, unpublished.Google Scholar
  118. 118.
    A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, and R. Santo, J. Chem. Phys. 72, 5187 (1980).Google Scholar
  119. 119.
    A. Bewick and J. Robinson, J. Electroanal Chem. 60, 163 (1975), 71, 131 (1976).Google Scholar
  120. 120.
    C. Hinnen, N. van Huong, A. Rousseau, and J. P. Dalbera, J. Electroanal. Chem. 95, 131 (1979).Google Scholar
  121. 121.
    D. Dickertmann, J. W. Schultze, and K. J. Vetter, J. Electroanal. Chem. 55, 429 (1974).Google Scholar
  122. 122.
    H. Angerstein-Kozlowska, B. E. Conway, and W. B. A. Sharp, J. Electroanal. Chem. 43, 9 (1973).Google Scholar
  123. 123.
    W. Boeck, Thesis, Technical University, Berlin (1981).Google Scholar
  124. 124.
    D. M. Kolb, R. Kötz, and D. L. Rath, Surface Sci. 101, 490 (1980).Google Scholar
  125. 125.
    K. Yamamoto, D. M. Kolb, R. Kötz, and G. Lehmpfuhl, J. Electroanal. Chem. 96, 233 (1979).Google Scholar
  126. 126.
    W. J. Plieth, H. Bruckner, and H. J. Hensel, Surface Sci. 101, 261 (1980).Google Scholar
  127. 127.
    T. Watanabe and H. Genscher, J. Electroanal. Chem. 117, 185 (1981).Google Scholar
  128. 128.
    D. N. Buckley and L. D. Burke, J. Chem. Soc. Faraday Trans. 1 71, 1447 (1975).Google Scholar
  129. 129.
    R. Kötz and H. Neff, Surface Sci. 160, 517 (1985).Google Scholar
  130. 130.
    S. Trasatti and W. E. O’Grady, in: Advances in Electrochemistry and Electrochemical Engineering (H. Genscher and C. W. Tobias, eds.), Vol. 12, p. 177, Wiley, New York (1981).Google Scholar
  131. 131.
    R. E. Connick and C. R. Hurley, J. Am. Chem. Soc. 74, 5012 (1952).Google Scholar
  132. 132.
    R. Kötz, S. Stucki, D. Scherson, and D. M. Kolb, J. Electroanal. Chem. 172, 211 (1984).Google Scholar
  133. 133.
    R. Adzić, E. Yeager, and B. D. Cahan, J. Electroanal. Chem. 85, 267 (1977).Google Scholar
  134. 134.
    C. N. van Huong, C. Hinnen, and A. Rousseau, J. Electroanal. Chem. 151, 149 (1983).Google Scholar
  135. 135.
    See, e.g., J. G. Gordon and S. Ernst, Surface Sci. 101, 499 (1980).Google Scholar
  136. 136.
    W. N. Hansen, Surface Sci. 101, 109 (1980).Google Scholar
  137. 137.
    D. L. Rath and W. N. Hansen, Surface Sci. 136, 195 (1984).Google Scholar
  138. 138.
    W. J. Anderson and W. N. Hansen, J. Electroanal. Chem. 43, 329 (1973).Google Scholar
  139. 139.
    B. Pettinger, U. Wenning, and D. M. Kolb, Ber. Bunsenges. Phys. Chem. 82, 1326 (1978).Google Scholar
  140. 140.
    J. Schneider, D. M. Kolb, and A. Otto, unpublished.Google Scholar
  141. 141.
    A. Tadjeddine and D. M. Kolb, J. Electroanal. Chem. 111, 119 (1980).Google Scholar
  142. 142.
    N. Collas, B. Beden, J. M. Leger, and C. Lamy, J. Electroanal. Chem. 186, 287 (1985).Google Scholar
  143. 143.
    H. Genscher, Faraday Discuss. Chem. Soc. 58, 219 (1974).Google Scholar
  144. 144.
    H. Labhart, Adv. Chem. Phys. 13, 179 (1967).Google Scholar
  145. 145.
    W. Liptay, Angew. Chem. 81, 195 (1969).Google Scholar
  146. 145.
    W. J. Plieth, P. Gruschinske, and H. J. Hensel, Ber. Bunsenges. Phys. Chem. 82, 615 (1978).Google Scholar
  147. 146.
    P. Schmidt and W. J. Plieth, J. Phys. (Paris) 44, C10–175 (1983).Google Scholar
  148. 147.
    P. H. Schmidt and W. J. Plieth, J. Electroanal. Chem. 201, 163 (1986).Google Scholar
  149. 148.
    R. Memming, Faraday Discuss. Chem. Soc. 58, 261 (1974).Google Scholar
  150. 149.
    See, e.g., D. M. Kolb, in:Advances in Electrochemistry and Electrochemical Engineering (H. Genscher and C. W. Tobias, eds.), Vol. 11, p. 125, Wiley, New York (1978).Google Scholar
  151. 150.
    W. J. Lorenz, H. D. Hermann, N. Wüthrich, and F. Hilbert, J. Electrochem. Soc. 121, 1167 (1974).Google Scholar
  152. 151.
    D. M. Kolb, R. Kötz, and K. Yamamoto, Surface Sci. 87, 20 (1979).Google Scholar
  153. 152.
    See, e.g., E. Bauer, H. Poppa, G. Todd, and F. Bonczek, J. Appl. Phys. 45, 5164 (1974).Google Scholar
  154. 153.
    J. W. Schultze and D. Dickertmann, Surface Sci. 54, 489 (1976).Google Scholar
  155. 154.
    K. Jüttner and W. J. Lorenz, Z Phys. Chem. N.F. 122, 163 (1980).Google Scholar
  156. 155.
    T. Takayanagi, D. M. Kolb, K. Kambe, and G. Lehmpfuhl, Surface Sci. 100, 407 (1980).Google Scholar
  157. 156.
    W. Heiland, F. Iberl, E. Taglauer, and D. Menzel, Surface Sci. 53, 383 (1975).Google Scholar
  158. 157.
    D. Aberdam, R. Durand, R. Faure, and F. El Omar, Surface Sci. 162, 782 (1985).Google Scholar
  159. 158.
    F. Chao and M. Costa, Thin Solid Films 82, 3 (1981).Google Scholar
  160. 159.
    G. Piazza, D. M. Kolb, K. Kempa, and F. Forstmann, Solid State Commun. 51, 905 (1984).Google Scholar
  161. 160.
    P. Bindra, H. Genischer, and D. M. Kolb, J. Electrochem. Soc. 124, 1012 (1977).Google Scholar
  162. 161.
    W. Gaebler, K. Jacobi, and W. Ranke, Surface Sci. 75, 355 (1978).Google Scholar
  163. 162.
    D. Schmeisser and K. Jacobi, Surface Sci. 88, 138 (1979).Google Scholar
  164. 163.
    D. M. Kolb, Ber. Bunsenges. Phys. Chem. 77, 891 (1973).Google Scholar
  165. 164.
    D. M. Kolb, Faraday Disc. Chem. Soc. 56, 138 (1973).Google Scholar
  166. 165.
    O. S. Heavens, Optical Properties of Thin Solid Films, Butterworths, London (1955), p. 177.Google Scholar
  167. 166.
    P. L. Clegg, Proc. Phys. Soc. (London ) 65B, 774 (1952).Google Scholar
  168. 167.
    D. K. Roe, J. K. Sass, D. S. Bethune, and A. C. Luntz, J. Electroanal. Chem. 216, 293 (1987).Google Scholar
  169. 168.
    R. H. Muller, in: Advances in Electrochemistry and Electrochemical Engineering (R. H. Muller, ed.), Vol. 9, p. 167, Wiley, New York (1973).Google Scholar
  170. 169.
    L. M. Peter, Ber. Bunsenges. Phys. Chem. 91, 419 (1987).Google Scholar
  171. 170.
    Yu. Ya. Gurevich, Yu. V. Pleskov, and Z. A. Rotenberg, Photoelectrochemistry, Consultants Bureau, New York (1980).Google Scholar
  172. 171.
    D. L. Rath, J. Electroanal. Chem. 150, 521 (1983).Google Scholar
  173. 172.
    See, e.g., R. H. Muller and J. C. Farmer, Surface Sci. 135, 521 (1983).Google Scholar
  174. 173.
    J. Horkans, B. D. Cahan, and E. Yeager, Surface Sci. 46, 1 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Dieter M. Kolb
    • 1
  1. 1.Fritz Haber Institute of Max Planck GesellschaftBerlin 33Germany

Personalised recommendations