On the Poisson Equation on the Infinite Dimensional Torus

  • Alexander D. Bendikov
  • Igor V. Pavlov


Let {μt}t>0 be the Wiener semigroup on the infinite dimensional torus T (cf. Heyer,5 Ch. 5). Let us consider the Green measure
$$G(dy) = \int\limits_0^\infty {e^{ - t} \mu _t (dy)dt}$$


Banach Space Gaussian Measure Continuous Semigroup Distribution Sense Continuous Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.D.Bendikov, I.V.Pavlov, Diffusion processes on the group T¥ and elliptic equations with infinite numbers of variables, in: “Probability Theory and Mathematical Statistics,” V.1: 145–169, Yu.V. Prohorov et al. ed., VNU Science Press BV, Utrecht (1987).Google Scholar
  2. 2.
    Ch.Berg, Potential theory on the infinite dimensional torus, Invent. Math. 32: 49–100 (1976).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    H.Heyer, “Probability Measures on Locally Compact Groups,” Springer-Verlag, Berlin — Heidelberg (1977).MATHGoogle Scholar
  4. 4.
    E.M.Stein,“Singular Integrals and Differentiability Properties of Functions,” Princeton Univ. Press, Guildford (1970).MATHGoogle Scholar
  5. 5.
    K.Yosida, “Functional Analysis,” Springer-Verlag, Berlin — Heidel berg (1980).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bendikov
    • 1
  • Igor V. Pavlov
    • 1
  1. 1.Rostov Civil Engineering InstituteRostov-on-DonUSSR

Personalised recommendations