On the Transition Function of the Infinite Dimensional Ornstein-Uhlenbeck Process Given by the Free Quantum Field

  • Michael Röckner

Abstract

In this paper we want to investigate a particular semigroup (πt)t>0 of probability kernels defined on some infinite dimensional Banach space Bα contained in Y’(ℝd−1) (i.e. the tempered distributions on ℝd-1), d ≥ 2,
$$\alpha \in ]\frac{{d - 2}}{2},\infty$$
. This semigroup (πt)t>0 is the transition function of the infinite dimensional Ornstein-Uhlenbeck process given by the free field of Euclidean quantum field theory on ℝd (cf. [1], [2]). We will establish that (πt)t>0 has the Feller property, determine its generator (on a suitable domain) and its Dirichlet form. Furthermore, we will characterise the associated entrance space in the sense of Dynkin (cf. [3], [4], [5]).

Keywords

Covariance Hunt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Nelson, The free Markov field, J. Funct. Anal. 12, 221–227 (1973).Google Scholar
  2. [2]
    S. Albeverio, R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 1–57 (1977).MATHCrossRefGoogle Scholar
  3. [3]
    E. B. Dynkin, Entrance and exit spaces for a Markov process, Actes Congres Intern. Math. 1970, Tome 2, 507–512 (1971).MathSciNetGoogle Scholar
  4. [4]
    E. B. Dynkin, The initial and final behaviour of trajectories of a Markov process, Russian Math. Surveys 26, 4, 165–185 (1971).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. B. Dynkin, Sufficient statistics and expreme points, Ann. Prob. 9, No. 5, 706–730 (1978).MathSciNetGoogle Scholar
  6. [6]
    M. Röckner, Traces of harmonic functions and a new path space for the free quantum field, to appear in J. Funct. Anal.Google Scholar
  7. [7]
    K. Ito, Infinite dimensional Ornstein-Uhlenbeck processes, Taniguchi Symp. SA, Katata 1982, K. Ito, ed., 197–224, North Holland, Amsterdam, Oxford, New York (1984).Google Scholar
  8. [8]
    K. Ito, Foundations of stochastic differential equations in infinite dimensional spaces, CBMS-NSF Regional Conference Series in Appl. Math. Vol. 47, SIAM, Philadelphia (1984).CrossRefGoogle Scholar
  9. [9]
    A. Antoniades, R. Carmona, Eigenfunction expansions for infinite dimensional Ornstein-Uhlenbeck processes, Probab. Th. Rel. Fields 74, 31–54 (1987).CrossRefGoogle Scholar
  10. [10]
    J. Bliedtner, W. Hansen, Potential theory, Springer, Berlin, Heidelberg, New York, Tokyo (1986).MATHCrossRefGoogle Scholar
  11. [11]
    J. T. Cannon, Continuous sample paths in quantum field theory, Commun. Math. Phys. 35, 215–233 (1974).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Gel’fand and N. J. Vilenkin, Generalized functions, Vol. 4., Some applications of harmonic analysis, Academic Press, New York (1964).Google Scholar
  13. [13]
    L. Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105, 372–390 (1962).CrossRefGoogle Scholar
  14. [14]
    L. Gross, Abstract Wiener spaces, Proc. 5th Berkeley Symp. Math. Stat. Prob. 2, 31–42 (1965).Google Scholar
  15. [15]
    H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math. 463, 1–224, Springer, Berlin, Heidelberg, New York (1975).Google Scholar
  16. [16]
    R. Carmona, Measurable norms and some Banach space valued Gaussian processes, Duke Math. J. 44 no. 1, 109–127 (1977).MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie, de Gruyter, Berlin, New York (1978).Google Scholar
  18. [18]
    B. Simon, The P(Φ)2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J. (1974).Google Scholar
  19. [19]
    J. Glimm, A. Jaffe, Quantum physics: A functional integral point of view, Springer, New York, Heidelberg, Berlin (1981).MATHGoogle Scholar
  20. [20]
    R. L. Dobrushin, R. A. Minos, An investigation of the properties of generalized Gaussian random fields, Sel. Math. Sov. 1, 215–263 (1981). Originally published in Zadachy mekhaniky i matematicheskoy fiziky, Moscow: Nauka, 117–165 (1976).Google Scholar
  21. [21]
    E. B. Dynkin, Die Grundlagen der Theorie der Markoffsehen Prozesse, Springer, Berlin, Göttingen, Heidelberg (1961).Google Scholar
  22. [22]
    S. Kusuoka, The support property of a Gaussian white noise and its application, J. Fac. Sci. Univ. Tokyo, Sec. I.A. 29, no 2, 387–400 (1982).MathSciNetMATHGoogle Scholar
  23. [23]
    S. Watanabe, Lectures on stochastic differential equations and Malliavin calculus, Springer, Berlin, Heidelberg, New York, Tokyo (1984).MATHGoogle Scholar
  24. [24]
    M. Fukushima, Dirichlet forms and Markov processes, North Holland, Amsterdam, Oxford, New York (1980).MATHGoogle Scholar
  25. [25]
    N. Bouleau, F. Hirsch, Formes de Dirichlet générales et densité des variables aléatoires réelles sur l’espace de Wiener, J. Funct. Anal. 69, 229–259 (1986).MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    S. Albeverio, R. Høegh-Krohn, Quasi invariant measures, symmetric diffusion processes and quantum fields; Les méthodes mathématiques de la théorie quantique des champs, Colloques Internationaux du C.N.R.S., no. 248, Marseille, 23–27 juin 1975, C.N.R.S., (1976).Google Scholar
  27. [27]
    S. Albeverio, R. Høegh-Krohn, Hunt processes and analytic potential theory on rigged Hilbert spaces, Ann. Inst. Henri Poincaré, Vol. XIII, no. 3, 269–291 (1977).Google Scholar
  28. [28]
    S. Kusuoka, Dirichlet forms and diffusion processes on Banach spaces, J. Fac. Sci. Univ. Tokyo, Sec IA 29, 79–95, (1982).MathSciNetMATHGoogle Scholar
  29. [29]
    J. T. Cox, On one-dimensional diffusions with time parameter set (-∞, ∞). The Annals of Probability 5 No. 5, 807–813 (1977).MATHCrossRefGoogle Scholar
  30. [30]
    M. Röckner, A Dirichlet problem for distributions and specifications for random fields, Memoirs of the Am. Math. Soc. 54, 324 (1985).Google Scholar
  31. [31]
    J. Neveu, Processus aléatoires Gaussiens, Les presses de l’université de Montreal (1968).Google Scholar
  32. [32]
    K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York (1967).MATHGoogle Scholar
  33. [33]
    H. Föllmer, Phase transition and Martin boundary, in Séminaire de probabilités IX-Strasbourg, Lecture Notes in Math., Vol. 465, Springer, Berlin, Heidelberg, New York (1975).Google Scholar
  34. [34]
    C. Preston, Random fields, Lecture Notes in Math., Vol. 534, Springer, Berlin, Heidelberg, New York.Google Scholar
  35. [35]
    M. Röckner, Specifications and Martin boundaries for p (Φ)2-random fields, Commun. Math. Phys. 106, 105–135 (1986).MATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Michael Röckner
    • 1
  1. 1.Department of MathematicsUniversity of EdinburghEdinburghScotland

Personalised recommendations