Diffusion Kernels of Logarithmic Type

  • Masayuki ItÔ


Let X be a locally compact, non-compact Hausdorff space with countable basis. We denote by:
  • CK(X) the usual topological vector space of all finite continuous functions with compact support;

  • C(X) the usual Fréchet space of all finite continuous functions on X;

  • MK(X) the usual topological vector space of all real Radon measures with compact support;

  • M(X) the topological vector space of real Radon measures on X with the weak topology.


Maximum Principle Topological Vector Space Weak Topology Continuous Linear Operator Diffusion Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. ItÔ, Les noyaux de convolution de type logarithmique, Théorie du potentiel, Proc. Orsay 1983, Lecture Notes in Math., Springer.Google Scholar
  2. 2.
    M. ItÔ, Une caractérisation des noyaux de convolution réels de type logarithmique, Nagoya Math. J., 97 (1985).Google Scholar
  3. 3.
    M. ItÔ, Le principe semi-complet du maximum pour les noyaux de convolution réels, Nagoya Math. J., 101 (1986).Google Scholar
  4. 4.
    G. Choquet and J. Deny, Aspects linéaires de la théorie du potentiel, Théorème de dualité et applications, C. R. Acad. Sc. Paris, 243 (1959).Google Scholar
  5. 5.
    M. ItÔ, On weakly regular Hunt diffusion kernels, Hokkaido Math. J., 10 (1981).Google Scholar
  6. 6.
    N. Suzuki, Invariant measures for uniformly recurrent diffusion kernels, Hiroshima Math. J., 13, 3 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Masayuki ItÔ
    • 1
  1. 1.Department of MathematicsNagoya UniversityChikusa-ku, Nagoya 464Japan

Personalised recommendations