Nondestructive Residual Stress Measurements in Railroad Wheels Using the Low-Field Magnetoacoustic Test Method

  • M. Namkung
  • D. Utrata


Residual tensile stresses in the rims of railroad wheels created by repeated applications of brakes have been known to contribute to catastrophic wheel failures. About 235,000 potentially dangerous railroad wheels are being removed anually in the US to prevent the wheel-related accidents [1]. The current industrial standard determining the removal of a particular wheel from service is the federal regulation of a visual inspection method. In this method one determines the width of a discolored band in the rim of a wheel radially, and if the width exceeds 10 cm (4 in.) the wheel is considered potentially dangerous. Destructive test methods, e.g., hole-drilling and saw-cutting techniques, however, have shown that the visual inspection method is unreliable. Some wheels considered dangerous had no appreciable residual tensile stresses, while some considered safe (not discolored) had dangerous level of residual tensile stresses in the rim when saw-cut or hole-drilled. To improve the level of safety in railroad transportation and reduce waste, reliable NDE methods have been in great demand.


Residual Stress Domain Wall Residual Tensile Stress Domain Wall Motion Acoustic Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Stevens; Private communication.Google Scholar
  2. 2.
    H. F. Fukuoka, H. Toda and T. Yamane, Exp. Mech. 18 (7), 277 (1978).CrossRefGoogle Scholar
  3. 3.
    H. Fukuoka, H. Toda, K. Hirakawa, H. Sakamoto and Y. Toya, “Acoustoelastic Measurements of Residual Stress Measurements of residual stresses in the Rim of Railroad Wheels”, in Wave Propagation in Homogeneous Media and Ultrasonic Nondestructive Evaluation, Edited by G. C. Johnson, AMD-Vol. 6 (Published by ASME, 1984).Google Scholar
  4. 4.
    K. Tiitto, “Solving Internal Stress Measurement Problems”, in Nondestruvctive Methods for Material Property Determination, Edited by C. O. Ruud and R. E. Green, Jr. (Plenum Press, New York, 1984).Google Scholar
  5. 5.
    Y. Shapira, “Acoustic Wave Propagation in High Magnetic Fields”, Physical Acoustics Vol. V, Edited by W. P. Mason (Academic Press, New York, 1968).Google Scholar
  6. 6.
    G. A. Alers, J. R. Neighbours and H. Sato, J. Phys. Chem. Solids 9, 21 (1958).CrossRefGoogle Scholar
  7. 7.
    B. D. Cullity, Introduction to Magnetic Materials (Addison-Weslely, Menlo Park, 1972).Google Scholar
  8. 8.
    D. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951).Google Scholar
  9. 9.
    C. Kittel, Rev. Mod. Phys. 21, 541 (1949).CrossRefGoogle Scholar
  10. 10.
    H. Trauble, “Crystal Defects in Ferromagnetc Single Crystals”, in Magnetism and Metallurgy Vol. 2, Editted by A. E. Berkowitz and E. Kneller (Academic Press, New York, 1969).Google Scholar
  11. 11.
    M. Namkung, D. Utrata, S. G. Allison and J. S. Heyman, Proc. IEEE Ultrasonics Symposium 2, 1022 (1985).Google Scholar
  12. 12.
    M. Namkung and J. S. Heyman, Proc. IEEE Ultrasonis Symposium 2, 950 (1984).Google Scholar
  13. 13.
    S. G. Allison, J. S. Heyman, K. Smith and K. Salama, Proc. IEEE Ultrasonics symposium 2, 997 (1984) and references cited there.Google Scholar
  14. 14.
    G. de Vries, D. W. Van Geest, R. Gersdorf and G. W. Ranthenau, Physica 25, 1211 (1959).CrossRefGoogle Scholar
  15. 15.
    G. W. Rathenau and G. E. de Vries, “Diffusion”, in Magnetism and Meatallurgy Vol. 2, Editted by A. E. Berkowitz and E. Kneller (Academic Press, New York, 1969).Google Scholar
  16. 16.
    H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957).CrossRefGoogle Scholar
  17. 17.
    A. S. Nowick and W. R. Heller, Advan. Phys. 14, 101 (1965).CrossRefGoogle Scholar
  18. 18.
    H. Sugimoto and Y. Fukai, Phys. Rev. B 22, 670 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Namkung
    • 1
  • D. Utrata
    • 1
    • 2
  1. 1.NASA Langley Research CenterHamptonUSA
  2. 2.Association of American RailroadsChicagoUSA

Personalised recommendations