Skip to main content

Ultrasonic Evaluation of the Nonlinearity of Metals from a Design Perspective

  • Chapter
Book cover Review of Progress in Quantitative Nondestructive Evaluation

Abstract

Acoustoelasticity is a method for evaluating the state of stress in a material by making measurements of the relative velocity change of an ultrasonic wave propagating through the stressed medium. The physical basis of this technique is the slight nonlinearity found in the stress-strain curve in the elastic region. This nonlinearity is often characterized by the introduction of two types of elastic constants: second-order elastic constants (SOEC) which describe the material behavior in the absence of stress, and third-order elastic constants (TOEC) which describe the nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurement (McGraw Hill, New York, 1973).

    Google Scholar 

  2. W. C. Springer, Evaluation of Second- and Third-Order Elastic Constants of Rolled Aluminum Plate, Masters Thesis, University of California, Berkeley (1986).

    Google Scholar 

  3. R. H. Rand, Computer Algebra in Applied Mathematics, an Introduction to MACSYMA (Pitman, Boston, 1984).

    Google Scholar 

  4. P. M. Naghdi and J. A. Trapp, Int. J. Engng. Sci. 13, 785 (1975).

    Article  Google Scholar 

  5. D. S. Hughes and J. L. Kelly, Phys. Rev. 92, 1145 (1953)

    Article  Google Scholar 

  6. B. E. Powell and M. J. Skove, J. Appl. Phys. 53, 764 (1982).

    Article  CAS  Google Scholar 

  7. R. F. S. Hearmon, in Blastic, Piezoelectric, Piezo-optic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, Ed. by K.-H. Hellwege and A.M. Hellwege, (Springer-Verlag, Berlin, 1969) Vol. III/2, pp. 1–39.

    Google Scholar 

  8. R. Bechmann and R. F. S. Hearmon, in Elastic, Piezoelectric, Piezo-optic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, Ed. by K.-H. Hellwege and A.M. Hellwege, (Springer-Verlag, Berlin, 1969) Vol. III/2, pp. 102–125

    Google Scholar 

  9. G. C. Johnson, J. Appl. Mech., 52, 659 (1985).

    Article  Google Scholar 

  10. R. T. Smith, R. Stern, and R. W. B. Stephens, J. Acoust. Soc. Am. 40 1002 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wong, T.E., Johnson, G.C. (1988). Ultrasonic Evaluation of the Nonlinearity of Metals from a Design Perspective. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0979-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0979-6_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8275-4

  • Online ISBN: 978-1-4613-0979-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics