Skip to main content

Two-Dimensional Supergravities, Hidden Symmetries and Integrable Systems

  • Chapter
Particle Physics

Part of the book series: NATO ASI Series ((NSSB,volume 173))

  • 149 Accesses

Abstract

Present interest in two-dimensional field-theories is dominated by the all-important role they play in string and superstring theories. This is understandable in view of the eminence of superstrings as prime candidates for the ultimate unification of fundamental interactions1, but it makes us forget that the special role of two dimensions was already recognized long before the advent of superstrings. While the two-dimensional theories relevant to strings are all conformally invariant2, 3 (and really nothing but free field theories), there exist many examples of two-dimensional systems without conformai invariance which are not free theories but nonetheless exactly solvable both at the classical and the quantum level4. These properties are related to two peculiarities of two-dimensional physics. One is the emergence of infinite-dimensional symmetries. For instance, the conformai group is infinite-dimensional in d=2 but not for d>2. Symmetries of the Kac-Moody type5 play an important role not only in (compactified) string theories but also in d=2 general relativity6, 7, 8 and nonlinear σ-models9. The other peculiarity is the indistinguishability of bosons and fermions which was first noticed in the guise of the equivalence of the Thirring model with the sine-Gordon theory10; again, this feature is not restricted to the conformally invariant theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory”, Vols, 1, 2, Cambridge University Press, Cambridge (1987).

    MATH  Google Scholar 

  2. A. M. Polyakov, Phys. Lett. 103B (1981) 207, 211.

    MathSciNet  ADS  Google Scholar 

  3. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. B241 (1984) 333

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B271 (1986) 93.

    MathSciNet  ADS  Google Scholar 

  5. There is an ample literature about integrable systems, see for instance L. D. Faddeev, Soviet Sci. Review C1 (1980) 107; in Les Houches Lectures, North Holland (1982)

    Google Scholar 

  6. H. B. Thacker, Rev. Mod. Phys. 53 (1981) 253

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Eilenberg, “Solitons”, Springer Verlag, Berlin (1981)

    Google Scholar 

  8. H. J. de Vega, Univ. of Paris VI preprint LPTHE 85/54 (1985)

    Google Scholar 

  9. H. Grosse, in Physics and Mathematics, Lectures on Recent Results, Vol.2, World Scientific, Singapore (1986)

    Google Scholar 

  10. L. Dolan, Phys. Rep. 109C (1984) 1

    Article  MathSciNet  ADS  Google Scholar 

  11. and the relevant articles in: Vertex Operators in Mathematics and Physics, Publ. of the Mathematical Research Institute Nr. 3, Springer Verlag (1984).

    Google Scholar 

  12. V. G. Kac, “Infinite Dimensional Lie Algebras”, Cambridge Univ. Press, Cambridge (1985)

    MATH  Google Scholar 

  13. P. Goddard and D. I. Olive, IJMPA 1 (1986) 303.

    MathSciNet  ADS  MATH  Google Scholar 

  14. R. Geroch, J. Math. Phys. 13 (1972) 394

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. W. Kinnersley, J. Math. Phys. 18 (1977) 1529

    Article  ADS  Google Scholar 

  16. W. Kinnersley and D. M. Chitre, J. Math. Phys. 18 (1977) 1538

    Article  ADS  Google Scholar 

  17. D. Maison, Phys. Rev. Lett. 41 (1978) 521

    Article  MathSciNet  ADS  Google Scholar 

  18. V. A. Belinski and V. E. Sakharov, Sov. Phys. JETP 48 (1978) 985.

    ADS  Google Scholar 

  19. B. Julia, in Superspace and Supergravity, Cambridge Univ. Press, Cambridge (1981)

    Google Scholar 

  20. in Proc. 5th Johns Hopkins Workshop on Particle Theory, Baltimore (1981)

    Google Scholar 

  21. in Erice Workshop on Unified Field Theories in More than 4 Dimensions, World Scientific (1983)

    Google Scholar 

  22. in Frontiers in Particle Physics’83, World Scientific (1984).

    Google Scholar 

  23. P. Breitenlohner and D. Maison, in Solutions of Einstein’s Equations: Techniques and Results, eds. C. Hoenselars and W. Dietz, Springer Verlag (1984)

    Google Scholar 

  24. Ann. Inst. Poincaré 46 (1987) 215; Max Planck Inst. preprint, to appear.

    Google Scholar 

  25. K. Pohlmeyer, Comm. Math. Phys. 46 (1976) 207

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Lüscher and K. Pohlmeyer, Nucl. Phys. B 137 (1978) 46

    Article  ADS  Google Scholar 

  27. H. Eichenherr, Nucl. Phys. B 146 (1978) 215

    Article  ADS  Google Scholar 

  28. V. E. Zakharov and A. V. Mikhailov, JETP 47 (1978) 1017

    ADS  Google Scholar 

  29. H. J. de Vega, Phys. Lett. 87B (1979) 233

    ADS  Google Scholar 

  30. L. Dolan, Phys. Rev. Lett. 47 (1981) 1371

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Eichenherr, in Springer Lectures in Physics, Vol.151.

    Google Scholar 

  32. S. Coleman, Phys. Rev. D11 (1975) 2088

    ADS  Google Scholar 

  33. S. Mandelstam, Phys. Rev. D11 (1975) 3026.

    MathSciNet  ADS  Google Scholar 

  34. E. Cremmer, B. Julia and J. Scherk, Phys. Lett. 76B (1978) 409.

    ADS  Google Scholar 

  35. H. Nicolai, Phys. Lett. 194B (1987) 402.

    MathSciNet  ADS  Google Scholar 

  36. M. Sato and Y. Sato, RIMS Kôkyûroku 388 (1980) 183 and 414 (1981) 181

    Google Scholar 

  37. M. Kashiwara and T. Miwa, Proc. Jap. Acad. 57A (1981) 342

    MathSciNet  Google Scholar 

  38. E. Date, M. Jimbo, M. Kashiwara and T. Miwa, J. Phys. Soc. Jap. 50 (1981) 3806, 3813; Physica 4D (1982) 343; J. Phys. A16 (1983) 221

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. E. Date, M. Jimbo and T. Miwa, J. Phys. Soc. Jap. 51 (1982) 4116, 4125; 52 (1983) 388, 761, 766

    Article  ADS  Google Scholar 

  40. E. Date, M. Kashiwara, M. Jimbo and T. Miwa, in Proceedings of RIMS Symposium on Nonlinear Integrable Systems-Classical Theory and Quantum Theory, World Scientific, Singapore (1983)

    Google Scholar 

  41. M. Jimbo and T. Miwa, Publ. RIMS (Kyoto Univ.) 19 (1983) 943

    Google Scholar 

  42. V. G. Kac and D. H. Peterson, preprint IHES/M/85/63.

    Google Scholar 

  43. S. Ferrara, D. Z. Freedman and P. van Nieuwenhuizen, Phys. Rev. D13 (1976) 3214

    ADS  Google Scholar 

  44. S. Deser and B. Zumino, Phys. Lett. 62B (1976) 335

    MathSciNet  ADS  Google Scholar 

  45. P. van Nieuwenhuizen, Phys. Rep. 68C (1981) 189.

    Article  ADS  Google Scholar 

  46. B. de Wit, in Supergravity’81, eds. S. Ferrara and J. G. Taylor, Cambridge Univ. Press, Cambridge (1982) and references therein.

    Google Scholar 

  47. L. Brink, P. Di Vecchia and P. Howe, Phys. Lett. 65B (1976) 471

    ADS  Google Scholar 

  48. S. Deser and B. Zumino, Phys. Lett. 65B (1976) 369.

    MathSciNet  ADS  Google Scholar 

  49. See e. g. P. Nelson, Phys. Rep. 149C (1987) 304.

    Google Scholar 

  50. See e. g. L. Alvarez-Gaumé and P. Nelson, in Proceedings of the 1986 Trieste Spring School on Superstrings, World Scientific, Singapore (1987).

    Google Scholar 

  51. P. Goddard, J. Goldstone, C. Rebbi and C. B. Thorn, Nucl. Phys. B56 (1973) 109.

    Article  ADS  Google Scholar 

  52. P. Goddard and C. B. Thorn, Phys, Lett. 40B (1972) 235.

    ADS  Google Scholar 

  53. P. Goddard, C. Rebbi and C. B. Thorn, Nuovo Cimento 12A (1972) 425.

    MathSciNet  ADS  Google Scholar 

  54. S. Hwang, Phys. Rev. D28 (1983) 2614

    ADS  Google Scholar 

  55. M. Kato and K. Ogawa, Nucl, Phys. B212 (1983) 443.

    Article  ADS  Google Scholar 

  56. A. Belavin and V. Knizhnik, Phys. Lett. B168 (1986) 201.

    MathSciNet  ADS  Google Scholar 

  57. M. J. Bowick and S. G. Rajeev, Phys. Rev. Lett. 58 (1987) 535

    Article  MathSciNet  ADS  Google Scholar 

  58. K. Pilch and N. P. Warner, MIT preprint STP 1457 (1987).

    Google Scholar 

  59. D. Gorenstein, “Finite Simple Groups”, Plenum Press, New York (1982).

    MATH  Google Scholar 

  60. A. P. Ogg, Can. J. Math., Vol. XXXVI, No.5 (1984) 800.

    Article  MathSciNet  Google Scholar 

  61. M. Ademollo et al., Phys. Lett. B62 (1976) 105

    ADS  Google Scholar 

  62. Nucl. Phys. B 111 (1976) 77 and B 114 (1976) 297

    Google Scholar 

  63. L. Brink and J. H. Schwarz, Nucl. Phys. B 121 (1977) 285.

    Article  MathSciNet  ADS  Google Scholar 

  64. P. Ramond and J. H. Schwarz, Phys. Lett. B64 (1976) 75

    MathSciNet  ADS  Google Scholar 

  65. R. Gastmans, A. Sevrin, W. Troost and A. van Proeyen, IJMPA 2 (1987) 195.

    ADS  MATH  Google Scholar 

  66. E. Bergshoeff, E. Sezgin and H. Nishino, Phys. Lett. B186 (1987) 167.

    MathSciNet  ADS  Google Scholar 

  67. F. Englert, A. Sevrin, P. Spindel, W. Troost and A. Van Proeyen, preprint KUL-TF-87/12 (1987).

    Google Scholar 

  68. K. S. Narein, Phys. Lett. 169B (1986) 41

    ADS  Google Scholar 

  69. H. Kawai, D. Lewellen and S. Tye, Nucl. Phys. B288 (1987) 1

    Article  MathSciNet  ADS  Google Scholar 

  70. W. Lerche, D. Lüst and A. N. Schellekens, Nucl. Phys. B287 (1987) 477.

    Article  ADS  Google Scholar 

  71. J. L. Gervais and A. Neveu, Nucl. Phys. B257 [FS14] (1985) 59; Phys. Lett. 151B (1985) 271

    Article  MathSciNet  ADS  Google Scholar 

  72. A. Bilal and J. L. Gervais, Nucl. Phys. B284 (1987) 397.

    Article  MathSciNet  ADS  Google Scholar 

  73. N. Marcus and J. H. Schwarz, Nucl.Phys. B228 (1983) 145.

    Article  MathSciNet  ADS  Google Scholar 

  74. H. Nicolai, Phys. Lett. 187B (1987) 316.

    MathSciNet  ADS  Google Scholar 

  75. B. de Wit and H. Nicolai, Nucl. Phys. B274 (1986) 363.

    Article  ADS  Google Scholar 

  76. S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177 (1969) 2239.

    Article  ADS  Google Scholar 

  77. E. Witten, Comm. Math. Phys. 92 (1984) 455.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. P. Goddard, W. Nahm and D. I. Olive, Phys. Lett. 160 B (1985) 111.

    MathSciNet  ADS  Google Scholar 

  79. E. Cremmer and B. Julia, Nucl. Phys. B 159 (1979) 141.

    Article  MathSciNet  ADS  Google Scholar 

  80. M. K. Gaillard and B. Zumino, Nucl. Phys. B 193 (1981) 221.

    Article  MathSciNet  ADS  Google Scholar 

  81. N. Bourbaki, “Groupes et Algèbres de Lie”, chap.4, 5, 6, Hermann, Paris (1968).

    MATH  Google Scholar 

  82. P. Goddard and D. I. Olive, in Vertex Operators in Mathematics and Physics, Publ. of the Mathematical Research Institute Nr.3, Springer Verlag (1984).

    Google Scholar 

  83. A. Feingold and J. Frenkel, Math. Ann. 263 (1983) 87.

    Article  MathSciNet  MATH  Google Scholar 

  84. M. J. Duff and C. N. Pope, in Supersymmetry and Supergravity’82, Wold Scientific, Singapore (1983).

    Google Scholar 

  85. B. de Wit and H. Nicolai, Nucl. Phys. B 281 (1987) 211.

    Article  ADS  Google Scholar 

  86. C. Vafa, Phys. Lett. 190B (1987) 47

    MathSciNet  ADS  Google Scholar 

  87. L. Alvarez-Gaumé, C. Gomez and C. Reina, Phys. Lett. 190B (1987) 55

    ADS  Google Scholar 

  88. N. Ishibashi, Y. Matsuo and H. Ooguri, Tokyo Univ. preprint UT — 499 (1986).

    Google Scholar 

  89. R. Hirota, in “Solitons”, Springer Verlag (1980).

    Google Scholar 

  90. J. Frenkel and V. G. Kac, Inv. Math. 62 (1980) 23.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. V. G. Kac and D. M. Peterson, in Geometry, Anomalies and Topology, World Scientific (1985)

    Google Scholar 

  92. P. Goddard, D. I. Olive and A. Schwimmer, Phys. Lett. 157B (1985) 393.

    MathSciNet  ADS  Google Scholar 

  93. W. J. Zakrzewski, Durham preprint DTP-87/3 (1987).

    Google Scholar 

  94. E. Witten, in Unified String Theories, World Scientific (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Nicolai, H. (1988). Two-Dimensional Supergravities, Hidden Symmetries and Integrable Systems. In: Lévy, M., Basdevant, JL., Jacob, M., Speiser, D., Weyers, J., Gastmans, R. (eds) Particle Physics. NATO ASI Series, vol 173. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0977-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0977-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8274-7

  • Online ISBN: 978-1-4613-0977-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics