Skip to main content

Physiology of Multiple Calcium Channels

  • Chapter
Calcium and Ion Channel Modulation

Abstract

Calcium ions entering cells via voltage-dependent calcium channels play a fundamental role in many cellular processes. For instance, calcium is involved in both synaptic transmission and hormone release in neuronal and secretory cells. In many excitable cells, calcium ions act as a charge carrier. Calcium ions activate the contractile machinery of both heart and skeletal muscle. In heart the slow inward Ca current is critically involved in maintaining the normal rhythmicity needed to keep the heart beating. As can be seen from the few examples listed above, Ca channels play a dual role in many excitable cells. They are capable of responding to and influencing a cell’s electrical properties; in many cells the Ca channels alone, or in combination with sodium channels, generate the cellular action potentials. The Ca channels’ second function is that of a transducer. By opening or closing in response to the cell membrane potential they help regulate on a millisecond time scale the influx of calcium ions, one of the best characterized intracellular second messengers, into the cell. Elevated intracellular levels of calcium will activate other ion channels, such as Ca-dependent K channels or Ca-dependent non-selective channels, leading to complex electrical behaviors. It is also possible that calcium entering the cell through Ca channels may be involved in modulating a variety of cellular processes including Ca-dependent enzyme systems such as Ca/calmodulin-dependent protein kinase, or protein kinase C. (Hagiwara and Byerly (1981, 1983), Pallotta, Magleby and Barrett (1982), Yellen (1982), Carafoli (1983), Reuter (1983), Hille (1984), Nishizuka (1984, 1986), Carafoli and Penniston (1985), Tsien (1986)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C.M., & Matteson, D.R., (1985). Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227: 65–67.

    Article  Google Scholar 

  • Ascher, P., & Nowak, L., (1986). Calcium permeability of the channels activated by N-methyl-D-aspartate (NMDA) in mouse central neurons. J. Physiol. 377, 34p.

    Google Scholar 

  • Bean, B.P., (1985). Two types of calcium channels in canine atrial cells. Differences in kinetics, selectivity and pharmacology. J. Gen. Physiol. 86: 1–30.

    Article  Google Scholar 

  • Benham, C.D., and Tsien, R.W., (1987). Receptor-operated, Ca permeable channels activated by ATP in arterial smooth muscle cell. Nature, in press.

    Google Scholar 

  • Bossu, J.L., Feltz, A. and Thomann, J.M., (1985). Depolarization elicits two distinct calcium currents in vertebrate sensory neurons. Pfluegers Archiv. 403: 360–368.

    Article  Google Scholar 

  • Brown D.A., Docherty, R.J., Gahwiler, B., and Halliwell, J.V., (1985). Calcium currents in mammalian central neurons. In: Cardiovascular effects of dihydropyridine-type calcium antagonists and agonists. Eds: A. Fleckenstein, C. Van Breemen, R. Grob, and F. Hoffmeister. Bayer-Symposium IX.

    Google Scholar 

  • Canfield, D.R., & Dunlap, K., (1984). Pharmacological characterization of amine receptors on embryonic chick sensory neurones, Br. J. Pharmac.

    Google Scholar 

  • Carafoli, E., & Penniston, T.J., (1985). The calcium signal. Sci. Amer. 253, No. 5, 70–78.

    Article  Google Scholar 

  • Carbone, E., & Lux, H.D., (1984a). A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys. J. 46: 413–418.

    Article  Google Scholar 

  • Carbone, E., & Lux, H.D., (1984b). A low voltage-activating, fully inactivating Ca channel in vertebrate sensory neurons. Nature 310: 501–502.

    Article  Google Scholar 

  • Cavalle, A., Ochi., R., Pelzer, D., & Trautwein, W., (1983). Elementary currents through Ca2+ channels in guinea pig myocytes. Pflugers Archiv. 398: 284–297.

    Article  Google Scholar 

  • Cohen, C.J., & McCarthy, R.T., (1985). Differential aspects of dihydropyridines on two populations of Ca channels in anterior pituitary cells. Biophys. J. 47: 513a.

    Article  Google Scholar 

  • Deitmer, J.W., (1984). Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Styloncia. J. Physiol. 355: 137–159.

    Google Scholar 

  • DeRiemer, S.A., Strong, J.A., Albert, K.A., Greengard, P., Kaczmarek, L.K., (1985). Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature 313: 313–316.

    Article  Google Scholar 

  • Dunlap, K., & Fischbach, G.D., (1978). Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 276, 837–839.

    Article  Google Scholar 

  • Dunlap, K., & Fischbach, G.D., (1981). Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J. Physiol, 317, 519–535.

    Google Scholar 

  • Eckert R., & Chad, J.D. (1984). Inactivation of calcium channels. Progress in Biophysics and Molecular Biology. 44: 215–267.

    Article  Google Scholar 

  • Fabiato, A., (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, Brief Review, American Physiological Society. C1–C14.

    Google Scholar 

  • Fedulova, S.A., Kostyuk, P.K., & Veselovsky, N.S., (1985). Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J. Physiol. 359: 431–446.

    Google Scholar 

  • Feldman, D.H., & Yoshikami D. (1985). A peptide toxin from the marine mollusc Conus Geographicus blocks voltage-gated calcium channels. Soc. Neurosci. Abs.: 517.

    Google Scholar 

  • Fox, A.P., & Krasne, S. (1981). Two calcium currents in egg cell. Biophys. J. 33:145a.

    Google Scholar 

  • Fox, A.P., & Krasne, S. (1984). Two calcium currents in Neanthes Arenaceodentata egg cell membranes. J. Physiol. J. Physiol. 356: 491–505.

    Google Scholar 

  • Fox, A.P., Nowycky, M.C., & Tsien, R.W., (1987). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J. Physiol. in press.

    Google Scholar 

  • Fox, A.P., Nowycky, M.C., & Tsien, R.W., (1987). Single channel recordings of three types of calcium channels in chick sensory neurons. J. Physiol. in press.

    Google Scholar 

  • Hagiwara, S., & Byerly, L., (1981). Calcium channel. Ann. Rev. Neurosci. 4: 69–125.

    Article  Google Scholar 

  • Hagiwara, S., & Byerly, L., (1983). The calcium channel. TINS, 189–193.

    Google Scholar 

  • Hagiwara, S., Ozawa, S., & Sand, O., (1975). Voltage-clamp analysis of two inward currents mechanisms in the egg cell membrane of a starfish. J. Gen. Physiol. 65: 617–644.

    Article  Google Scholar 

  • Hess, P., Lansman, J.B., & Tsien, R.W., (1984). Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544.

    Article  Google Scholar 

  • Hille, B., (1984). Ionic channels in excitable membranes. Sinauer Associates, Sunderland, Mass., pp 426.

    Google Scholar 

  • Kerr, L.M., & Yoshikami, D., (1984). A venom peptide with a novel presynaptic blocking action. Nature 308: 282–284.

    Article  Google Scholar 

  • Kokubun, S., & Reuter, H., (1984). Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc. Natl. Acad. Sci. 81: 4824–4827.

    Article  Google Scholar 

  • Llinas, R., & Sugimori, M., (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305: 171–195.

    Google Scholar 

  • Llinas, R., & Yarom, Y. (1981). Electrophysiology of manmalian inferior olivary neurones. in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. 315: 549–567.

    Google Scholar 

  • MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J., and Barker, J.L., (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321, 519–522.

    Article  Google Scholar 

  • McCleskey, E.W., Fox, A.P., Feldman, D., Cruz, L.J., Olivera, B.M., Tsien, R.W., & Yoshikami, D., (1987). Calcium channel blockade by a peptide from Conus: Specificity and mechanism. Proc. Natl. Acad. Sci. in press.

    Google Scholar 

  • Mitra, R. & Morad, M. (1986). Two types of calcium channels in guinea pig ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A. 83, 5340–5344.

    Article  Google Scholar 

  • Narahashi, T., Tsunoo, A., & Yoshii, M., (1987). Characterization of two types of calcium channels in mouse neuroblastoma cells. J. Physiol. in press.

    Google Scholar 

  • Nilius, B., Hess., Lansman, J.B., & Tsien, R.W., (1985). A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446.

    Article  Google Scholar 

  • Nishizuka, Y., (1984). The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308, 693–698.

    Article  Google Scholar 

  • Nishizuka, Y., (1986). Studies and perspectives of protein kinase C. Science 233, 305–312.

    Article  Google Scholar 

  • Nowycky, M.C., Fox, A.P., & Tsien, R.W., (1985a). Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc. Natl. Acad. Sci. 82: 2178–2182.

    Article  Google Scholar 

  • Nowycky, M.C., Fox, A.P., & Tsien, R.W., (1985b). Three types of calcium channel with different calcium agonist sensitivity. Nature 316: 440–443.

    Article  Google Scholar 

  • Olivera, B.M., Gray, W.r., Zeikus, R., Mcintosh, J.M., Varga, J., Rivier, J., De Santos, V., & Cruz, L.J., (1985). Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343.

    Article  Google Scholar 

  • Pallotta, B.S., Magleby, K.L., & Barrett, J.N., (1981). Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293, 471–474.

    Article  Google Scholar 

  • Perney, T.M., Hirning, L.D., Leeman, S.E., & Miller, R.J., (1986). Multiple calcium channels mediate neurotransmitter release from peripheral neurones. Proc. Natl. Acad. Sci. 83: 6656–6659.

    Article  Google Scholar 

  • Reuter, H. (1983). Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301: 569–574.

    Article  Google Scholar 

  • Reuter, H. (1985). A variety of calcium channels. Nature 316: 391.

    Article  Google Scholar 

  • Strong, J.A., Fox, A.P., Tsien, R.W., & Kaczmarek, L.K., (1987). Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature in press.

    Google Scholar 

  • Tsien, R.W., (1986). Calcium channels in heart cells and neurons. In: Neuromodulation, L.K. Kaczmarek & I.B. Levitan eds., Oxford University Press.

    Google Scholar 

  • Yellen, G., (1982). Single Ca2+-H-activated nonselective cation channels in neuroblastoma. Nature 296, 357–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Fox, A.P. et al. (1988). Physiology of Multiple Calcium Channels. In: Grinnell, A.D., Armstrong, D., Jackson, M.B. (eds) Calcium and Ion Channel Modulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0975-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0975-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8273-0

  • Online ISBN: 978-1-4613-0975-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics